

KNX eTR Light Button for Temperature Control and Light

KNX eTR 205 Light Item numbers 71160 (white), 71162 (black)

KNX eTR 206 Light Item numbers 71170 (white), 71172 (black)

elsner

Manual

<u>1.</u>	Safety and operating instructions	. 3
2.	Description	
	2.0.1. Area function	
3.	Commissioning	. 5
3.1.	Addressing of the device at the bus	. 5
4.	Display and operation at the device	. 6
4.1.	Adjust room temperature (using the example KNX eTR 205 Light)	. 6
5.	Transmission protocol	. 9
5.1.	List of all communication objects	. 9
6.	Setting the parameters	13
6.1.	Behaviour on power failure/ restoration of power	13
6.2.	General settings	13
	Temperature measured value	
6.4.	Temperature threshold values	14
	6.4.1. Threshold value 1, 2	14
6.5.	Temperature PI controller	16
	6.5.1. Heating control stage 1/2	22
	6.5.2. Cooling control stage 1/2	24
	6.5.3. Fan Coil Control	26
6.6.	LEDs	27
	Buttons	
	6.7.1. Light 1 / 2	29
6.8.	Logic	
	6.8.1. AND logic outputs 1/2 and OR logic outputs 1/2	
	6.8.2. OR LOGIC connection inputs	
	·	

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

4

Safety advice for working on electrical connections, components,

etc.

DANGER!

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

WARNING!

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

CAUTION!

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

STOP

ATTENTION! ... indicates a situation which may lead to damage to property if it is not avoided.

ETS

In the ETS tables, the parameter default settings are marked by

underlining.

1. Safety and operating instructions

Installation, testing, operational start-up and troubleshooting should only be performed by a qualified electrician.

CAUTION! Live voltage!

- Inspect the device for damage before installation. Only put undamaged devices into operation.
- Comply with the locally applicable directives, regulations and provisions for electrical installation.
- Immediately take the device or system out of service and secure it against unintentional switch-on if risk-free operation is no longer guaranteed.

Use the device exclusively for building automation and observe the operating instructions. Improper use, modifications to the device or failure to observe the operating instructions will invalidate any warranty or guarantee claims.

Operate the device only as a fixed-site installation, i.e. only in assembled condition and after conclusion of all installation and operational start-up tasks, and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

For information on installation, maintenance, disposal, scope of delivery and technical data, please refer to the installation instructions.

2. Description

The **KNX eTR 205/206 Light push button** has touch-sensitive buttons with which functions can be called up in the KNX building bus system. The glass surface is printed with areas for setting the temperature and light. LEDs are integrated in these areas and their behaviour can be adjusted.

A temperature sensor is integrated into **KNX eTR 205/206 Light**. An external temperature reading can be received via the bus and processed with its own data to create a total temperature (mixed value).

The **KNX eTR 205/206 Light** has a PI controller for heating and cooling. The setpoint temperature can be changed using the "+" and "-" touch buttons.

Communication objects can be linked via AND and OR logic gates.

Functions:

Operating zone for temperature control with 2 areas (warmer, cooler)

- LEDs can be set. All LEDs Off, all LEDs as ambient lighting, all LEDs individually controllable
- Area function when touching two or more push buttons. Can be configured as switch, selector switch, as 8 or 16 bit encoder or for scenario recall
- Temperature measurements. Mixed value from own measured value and external values (proportion can be set by percentage), output of minimum and maximum values
- PI-controller for heating (one or two-level) and cooling (one or two-level) according to temperature. Regulation according to separate setpoints or basic setpoint temperature
- 2 AND and 2 OR logic gates each with 4 inputs. 8 logic inputs (in the form of communications objects) can be used as inputs for the logic gates. The output from each gate can be configured optionally as 1-bit or 2 x 8-bit

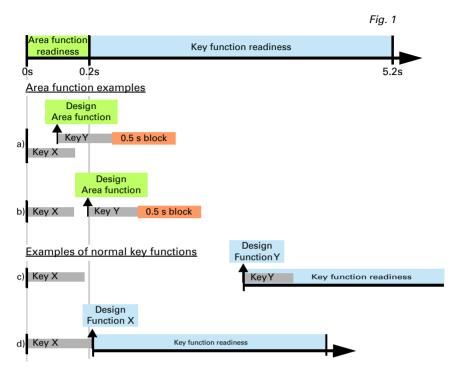
Additional functions KNX eTR 205 Light:

1 operating zone for light with 2 areas (switching/dimming with short/long distinction)

Additional functions KNX eTR 206 Light:

2 operating zones for light with 2 areas (switching/dimming with short/long distinction)

2.0.1. Area function


If the area function in ETS has been activated, another function is available alongside the regular key functions. This is triggered by touching multiple keys, e.g. if you touch the sensor with the palm of your hand.

Using the area function

If a key is pressed and another (different) key is touched within 0.2 seconds, the action set in the ETS is performed for the area operation (See Fig. 1 a) and b)). The keys are then blocked for 0.5 seconds.

Using the normal key function

If a key is pressed and no other key is touched within 0.2 seconds, the normal key function is enabled/provided for 5 seconds (See Fig. 1 c) and d)). This is extended for 5 seconds with each push of the button.

If the area function in the ETS is disabled, the keys can be used normally at any time.

3. Commissioning

Configuration is made using the KNX software as of ETS 5. The **product file** can be downloaded from the ETS online catalogue and the Elsner Elektronik website on **www.elsner-elektronik.de**.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

3.1. Addressing of the device at the bus

The equipment is delivered with the bus address 15.15.255. Another address can be programmed using the ETS.

The programming button is located at the bottom outer side of the front panel of the device and is recessed. Use a thin object to reach the button, e. g. a 1.5 mm² wire.

Fia. 2 View from bottom

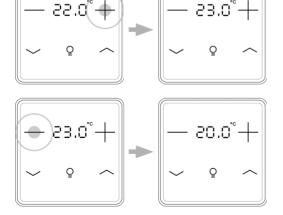
Temperature sensor

When programming mode is active, the programming LED lights up and all other LEDs also flash.

Display and operation at the device

Adjust room temperature (using the example KNX eTR 205 Light)

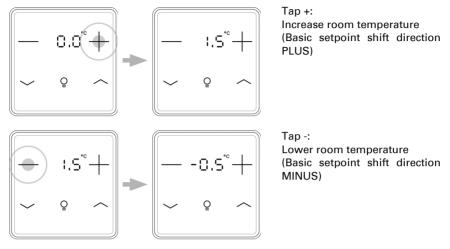
Depending on the setting of the "Display mode" parameter in the device application, the KNX eTR 205/206 Light push button displays the current room temperature value (or mixed value), the target value or the shift in relation to the basic setpoint. The display can be dimmed and switched off via the bus so that no value is displayed.


Option A: Display of actual temperature (room temperature)

The current room temperature is displayed. It is *not* possible to change the room temperature manually using the +/- buttons.

Option B: Display of target temperature or basic setpoint shift

Depending on the setting, the current target value or the shift relative to the base setpoint is displayed. The temperature can be changed by touching the +/- buttons.


Target value display (absolute value):

Tap +: Increase room temperature (target temperature is increased)

Tap -: Lower room temperature (target temperature is lowered)

Display of the **basic setpoint shift** (change compared to the basic setpoint of the control):

Option C: Display of actual temperature and target temperature/basic setpoint shift

During normal operation, the current room temperature is displayed. By touching the buttons, the display jumps to the target temperature or to the basic setpoint shift, depending on the presetting. Changes with + or - are visible. The display returns to the room temperature if no button is touched for 7 seconds.

Touch the + or - button briefly: The current target temperature (or the basic setpoint shift) is displayed.

Tap +: Increase room temperature (target temperature/basic setpoint shift is increased).

Tap -: Lower room temperature (target temperature/basic setpoint shift is lowered).

General:

The step size for the change and the possible setting range are defined in the device application (ETS). There you can also define whether the manually changed values are retained after a mode change (e.g. Eco mode overnight) or reset to the stored values.

The button functions can be disabled in the ETS or locked due to operating mode with priority 1.

5. Transmission protocol

Units:

Temperatures in degrees Celsius

5.1. List of all communication objects

Abbreviations Flags:

C Communication

R Read

W Write

T Transmit

U Update

No	Text	Function	Flags	DPT type	Size
0	Software version	Output	R-CT	[217.1] DPT_Version	2 Bytes
20	Temperature sensor: malfunction	Output	R-CT	[1.1] DPT_Switch	1 Bit
21	Temperature sensor: measured value external	Input	-WCT	[9.1] DPT_Val- ue_Temp	2 Bytes
22	Temperature sensor: measured value	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 Bytes
23	Temperature sensor: measured value total	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 Bytes
24	Temperature sensor: measured value min./max. query	Input	-WC-	[1.17] DPT_Trig- ger	1 Bit
25	Temperature sensor: measured value minimum	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 Bytes
26	Temperature sensor: measured value maximum	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 Bytes
27	Temperature sensor: measured value min./max. reset	Input	-WC-	[1.17] DPT_Trig- ger	1 Bit
30	Temp. thresholdV 1: Absolute value	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
31	Temp. thresholdV 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
32	Temp. thresholdV 1: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 Bytes
33	Temp. thresholdV 1: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 Bytes
34	Temp. thresholdV 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 Bit
35	Temp. thresholdV 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 Bit
36	Temp. thresholdV 2: Absolute value	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes

No	Text	Function	Flags	DPT type	Size
37	Temp. thresholdV 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
38	Temp. thresholdV 2: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 Bytes
39	Temp. thresholdV 2: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 Bytes
40	Temp. thresholdV 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 Bit
41	Temp. thresholdV 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 Bit
50	Temp.control: HVAC mode (priority 1)	Input / Output	RWCT	depending on setting	1 Byte
51	Temp.control: HVAC mode (priority 2)	Input / Output	RWCT	depending on setting	1 Byte
52	Temp.control: Mode frost/heat protection activt.	Input	RWCT	[1.1] DPT_Switch	1 Bit
53	Temp.control: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 Bit
54	Temp.control: Current setpoint	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 Bytes
55	Temp.control: Switch. (0: Heating 1: Cooling)	Input	-WC-	[1.1] DPT_Switch	1 Bit
56	Temp.control: Setpoint Comfort heating	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
57	Temp.control: Setpoint Comfort heat.(1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
58	Temp.control: Setpoint Comfort cooling	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
59	Temp.control: Setpoint Comfort cool.(1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
60	Temp.control: Basic 16-bit setpoint shift	Input	-WC-	[9.1] DPT_Val- ue_Temp	2 Bytes
61	Temp.control: Setpoint Standby heating	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
62	Temp.control: Setpoint Standby heat.(1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
63	Temp.control: Setpoint Standby cooling	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
64	Temp.control: Setpoint Standby cool. (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
65	Temp.control: Setpoint Eco heating	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes
66	Temp.control: Setpoint Eco heating (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
67	Temp.control: Setpoint Eco cooling	Input / Output	RWCT	[9.1] DPT_Val- ue_Temp	2 Bytes

No	Text	Function	Flags	DPT type	Size
68	Temp.control: Setpoint Eco cooling (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 Bit
69	Temp.control: Control variable heating (level 1)	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
70	Temp.control: Control variable heating (level 2)	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
71	Temp.control: Control variable cooling (level 1)	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
72	Temp.control: Control variable cooling (level 2)	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
73	Temperature control: Variable for 4/6-way valve	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
74	Temp.control: Status Heat. level 1 (1=ON 0=OFF)	Output	R-CT	[1.1] DPT_Switch	1 Bit
75	Temp.control: Status Heat. level 2 (1=ON 0=OFF)	Output	R-CT	[1.1] DPT_Switch	1 Bit
76	Temp.control: Status Cool. level 1 (1=ON 0=OFF)	Output	R-CT	[1.1] DPT_Switch	1 Bit
77	Temp.control: Status Cool. level 2 (1=ON 0=OFF)	Output	R-CT	[1.1] DPT_Switch	1 Bit
78	Temp.control: Comfort extension status	Input / Output	RWCT	[1.1] DPT_Switch	1 Bit
79	Temp.control: Comfort Extension time	Input	RWCT	[7.5] DPT_Time- PeriodSec	2 Bytes
80	Temp. Controller: Fan coil levels 0 to 3	Output	R-CT	[5.1] DPT_Scal- ing	1 Byte
81	Temp. Controller: Fan coil level 1	Output	R-CT	[1.1] DPT_Switch	1 Bit
82	Temp. Controller: Fan coil level 2	Output	R-CT	[1.1] DPT_Switch	1 Bit
83	Temp. Controller: Fan coil level 3	Output	R-CT	[1.1] DPT_Switch	1 Bit
84	Temp. Controller: Fan coil auto=1 manual=0	Input / Output	RWCT	[1.1] DPT_Switch	1 Bit
86	All LEDs On/Off	Input	-WC-	[1.1] DPT_Switch	1 Bit
87	All LEDs Brightness	Input	-WC-	[5.1] DPT_Scal- ing	1 Byte
88	LEDs Temperature display On/Off	Input	-WC-	[1.1] DPT_Switch	1 Bit
89	LEDs Temperature display Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
90	LED 1 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
91	LED 1 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
92	LED 2 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
93	LED 2 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
Only f	or KNX eTR 206 Light				
94	LED 3 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
95	LED 3 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit

No	Text	Function	Flags	DPT type	Size
96	LED 4 on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
97	LED 4 Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
For all	models				
99	Area operation on/off	Input	-WC-	[1.1] DPT_Switch	1 Bit
100	Area operation Output: Switch	Output	R-CT	depending on setting	2 Bytes
101	Light (1) switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
102	Light (1) dimming	Output	R-CT	[3.7] DPT_Con- trol_Dimming	4 Bit
Only fo	or KNX eTR 206 Light				
103	Light 2 switching	Output	R-CT	[1.1] DPT_Switch	1 Bit
104	Light 2 dimming	Output	R-CT	[3.7] DPT_Con- trol_Dimming	4 Bit
For all	models				
107	Logic input 1	Input	-WC-	[1.2] DPT_Bool	1 Bit
108	Logic input 2	Input	-WC-	[1.2] DPT_Bool	1 Bit
109	Logic input 3	Input	-WC-	[1.2] DPT_Bool	1 Bit
110	Logic input 4	Input	-WC-	[1.2] DPT_Bool	1 Bit
111	Logic input 5	Input	-WC-	[1.2] DPT_Bool	1 Bit
112	Logic input 6	Input	-WC-	[1.2] DPT_Bool	1 Bit
113	Logic input 7	Input	-WC-	[1.2] DPT_Bool	1 Bit
114	Logic input 8	Input	-WC-	[1.2] DPT_Bool	1 Bit
117	AND logic 1: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
118	AND logic 1: 8 bit output A	Output	R-CT	depending on setting	1 Byte
119	AND logic 1: 8 bit output B	Output	R-CT	depending on setting	1 Byte
120	AND logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
121	AND logic 2: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
122	AND logic 2: 8 bit output A	Output	R-CT	depending on setting	1 Byte
123	AND logic 2: 8 bit output B	Output	R-CT	depending on setting	1 Byte
124	AND logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
125	OR logic 1: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit
126	OR logic 1: 8 bit output A	Output	R-CT	depending on setting	1 Byte
127	OR logic 1: 8 bit output B	Output	R-CT	depending on setting	1 Byte
128	OR logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit
129	OR logic 2: 1 bit switching output	Output	R-CT	[1.2] DPT_Bool	1 Bit

No	Text	Function	Flags	DPT type	Size
130	OR logic 2: 8 bit output A	Output	R-CT	depending on setting	1 Byte
131	OR logic 2: 8 bit output B	Output	R-CT	depending on setting	1 Byte
132	OR logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 Bit

6. Setting the parameters

6.1. Behaviour on power failure/ restoration of power

Behaviour following a failure of the bus power supply:

The device sends nothing.

Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters. Delays established in the "General settings" parameter block are taken into account.

6.2. General settings

Set the basic properties of the data transmission.

Transmission delay after reset/bus restoration	<u>5 s</u> • • 300 s
Maximum message rate	1 message per second 10 messages per second 50 messages per second

6.3. Temperature measured value

Select, whether a malfunction object is to be sent if the sensor is faulty.

Use malfunction object	No • Yes

When **measuring temperature**, the self-heating of the device is considered by the electronics. The heating is compensated for in the device.

Use Offsets to adjust the readings to be sent.

Permanent measurement variations can be corrected in this way.

Offset in 0.1°C	-5050; <u>0</u>
-----------------	-----------------

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

Use external measured value	<u>No</u> • Yes
Ext. Reading proportion of the total reading	5% • 10% • • <u>50%</u> • • 100%
Sending pattern for internal and total measured value	 never periodically on change on change and periodically
At and above change of (if sent on change)	0.1°C • 0.2°C • <u>0.5°C</u> • • 5.0°C
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature min/max. value" objects to reset the values to the current readings. The values are not retained after a reset.

Use minimum and maximum value	<u>No</u> • Yes
-------------------------------	-----------------

6.4. Temperature threshold values

Activate the required temperature threshold values. The menus for the further setting of the threshold values are then displayed.

Use threshold value 1 / 2	Yes • No

6.4.1. Threshold value 1, 2

Threshold value

Decide in which cases **threshold values and delay times** received are to be kept per object. The parameter is only taken into consideration if the setting by object is activated further down. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Set the threshold values directly in the application program using parameters, or define them via the bus using a communication object.

Threshold value setpoint using parameter:

Set the threshold values and switching distance (hysteresis) directly.

Threshold value setpoint using	Parameter • Communication objects
Threshold in 0.1°C	-300 800; <u>200</u>

Threshold value setpoint using a communication object:

Beforehand, enter how the threshold value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined which will be valid until the first call with a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a temperature range is given in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved in so that it is retained in the event of a power supply failure and will be available again once the power supply is restored.

Threshold value setpoint using	Parameter • Communication objects
The last communicated value should	 never after restoration of power after power restoration and Programming
Start threshold value in 0.1°C valid until first Communication	-300 800; <u>200</u>
Object value limit (min) in 0.1°C	-300800
Object value limit (max) in 0.1°C	-300 <u>800</u>
Type of threshold value change	Absolute value • Increase/decrease
Interval (upon increase/decrease change)	<u>0.1 °C</u> • • 5°C

Set the **switching distance** independently of the type of threshold value setting.

Switching distance in % of the threshold value	0 50; <u>20</u>
Switching distance in 0.1°C	0 1100; <u>50</u>

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply, the output is (TV = Threshold value) (SD = Switching distance)	• TV above = 1 TV - SD below = 0 • LV above = 0 TV - SD below = 1 • TV below = 1 TV + SD above = 0 • TV below = 0 TV + SD above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay from 0 to 1 (if delay is adjustable via objects: valid until 1st communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching delay from 1 to 0 (if delay is adjustable via objects: valid until 1st communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Switching output sends	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (is sent only if "periodically" is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Block

The switching output can be blocked using an object.

Use switching output block	No • Yes
	1 222 1 77

Set the cases in which threshold vlaues and delay times received per object are to be retained.

Assessment of the block object	• At value 1: block At value 0: release • At value 0: block At value 1: release	
Blocking object value before first Communication	<u>0</u> • 1	
Switching output behaviour		
On blocking	Do not send message O Send Send Send	
On release (with 2 second release delay)	[Dependent on the "Switching output sends" setting]	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send message Send switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

6.5. Temperature PI controller

Activate the controller if you want to use it.

Use controller <u>No</u> • Yes	
--------------------------------	--

General rules

Decide in which cases **nominal values and delay times** received per object are to be kept. The parameter is only taken into consideration if the setting by object is activated further down. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

For an adequate regulation of the indoor temperature, comfort, standby, eco and building protection modes may be used.

Comfort when present,

Standby when absent,

Eco as a night-time mode and

Frost / heat protection (building protection) e.g. when the window is open.

The settings for the temperature control include the setpoint temperatures for the individual modes. Objects are used to determine which mode is to be selected. A change of mode may be triggered manually or automatically (e.g. by a timer, window contact).

The mode may be switched with two 8 bit objects of different priority. Objects

- "... HVAC mode (Prio 2)" for switching in everyday operation and
- "... HVAC mode (Prio 1)" for central switching with higher priority.

The objects are coded as follows:

- 0 = Auto
- 1 = Comfort
- 2 = Standby
- 3 = Eco
- 4 = Building protection

Alternatively, you can use three objects, with one object switching between eco and standby mode and the two others are used to activate comfort mode or frost/heat protection mode. The comfort object then blocks the eco/standby object, and frost/heat protection objects have the highest priority. Objects

- "... Mode (1: Eco, 0: Standby)",
- comfort activation mode" and
- "... frost/heat protection activation mode"

Switch mode via	• two 8-bit objects (HVAC modes)
	• three 1-bit objects

Select the **mode to be activated after reset** (e.g. power failure, reset of the line via the bus). (Default).

Then configure a temperature control block using the blocking object.

Mode after reset	Comfort Standby Eco Building protection
Behaviour of the blocking object with value	• 1 = Block 0 = release • 0 = block 1 = release
Value of the blocking object after reset	0 • 1

Specify when the current **control variables** are to be **sent** to the bus. Periodic transmission is safer if a message does not reach a recipient. You may also set up periodical monitoring by the actuator with this setting.

Send control variable	• on change • on change and periodically
from change of (in % absolute)	110; <u>2</u>
Cycle (if sent periodically)	5 s • • <u>5 min</u> • • 2 h

The **status object** reports the current status of the output (0 = OFF, 0 = ON) and may for example be used for visualisation, or to switch off the heating pump as soon as the heating is switched off.

Send status objects	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (if sent periodically)	5 s • • <u>5 min</u> • • 2 h

Then define the **type of setting**. Heating and/or cooling may be controlled in two stages.

Type of control	Single stage heating Dual-stage heating Single-stage cooling Single-stage heating + single-stage cooling Dual-stage heating + single-stage cooling Dual-stage heating + single-stage cooling
	 Dual-stage heating + dual-stage cooling

General setpoint values

You may enter separate setpoint values for each mode or use the comfort setpoint as a basic value.

If you are using the control for both heating *and* cooling, you may also select the setting "separately with switching object". Systems used for cooling in summer and for heating in winter can thus be switched from one to the other.

If no switching object is selected, the actual temperature determines whether heating or cooling takes place. If the actual value is between the heating and cooling setpoint values, the existing operating mode is retained. If heating was previously used, the system remains in heating mode and continues to aim for this set point value. Only when the cooling setpoint is reached does the operating mode switch to cooling.

If cooling has been used so far, the system remains in cooling mode and continues to aim for this set point value. Only when the heating setpoint is reached does the operating mode switch to heating.

If the actual temperature is above the cooling set point value, cooling takes place; if it is below the heating set point value, heating takes place. The difference between the

heating set point value and the cooling set point value or the dead zone should be at least 1 °C. This prevents the control from switching too often between heating and cooling in the event of minor temperature fluctuations.

If you are using the basic value, only the deviation from the comfort setpoint value is listed for the other modes (e.g, 2°C less for standby mode).

Keep modified setpoints after mode change	No • <u>Yes</u>
Setting the nominal values	separate with switching object separate without switching object with comfort setpoint as a basis with switching object with comfort setpoint as a basis without switching object
Analysis of the status object / Behaviour of the switching object at value	• 0 = Heating 1 = Cooling • 1 = Heating 0 = Cooling
Switching object value before first Communication (only if switching object is used)	<u>0</u> • 1

The **grades** for the setpoint changes is predefined. Whether the change remains active only temporarily (do not store) or remains stored even after restoration of power (and programming) is determined in the first section of "General controller". This also applies to a comfort extension.

Grading for setpoint changes (in 0.1 °C)	1 50; <u>10</u>
Storage of setpoint(s)	not be retained after power restoration after restoration of power and programming

The controller can be switched from eco mode, i.e. night mode, to comfort mode via the comfort extension. This means that the comfort setpoint can be maintained for longer, for example when having guests. The duration of this comfort extension period is set. After the comfort extension period is terminated, the system returns to eco mode.

Comfort extension time in seconds	136000; <u>3600</u>
(can only be activated from eco mode)	

Setpoint Comfort

Comfort mode is usually used for daytime mode when people are present. A starting value is defined for the comfort setpoint as well as a temperature range in which the nominal value may be modified.

Initial heating/cooling setpoint (in 0.1 °C)	-300800; 210
valid until first Communication	
(not upon saving the target value after pro-	
gramming)	

If setpoint values are entered separately:

Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint is used as the basis, the increase/decrease of this value is indicated.

Minimum base setpoint (in 0.1°C)	-300800; <u>160</u>
Maximum base setpoint (in 0.1°C)	-300800; <u>280</u>
Reduction by up to (in 0.1°C)	1100; <u>50</u>
Increase by up to (in 0.1°C)	1100; <u>50</u>

If the comfort setpoint is used as the basis, a dead zone is determined for the control mode "heating and cooling" to avoid direct switching from heating to cooling.

Dead zone between heating and cooling	1100; <u>50</u>	
(only if both heating AND cooling are used)	_	

Setpoint for standby

Standby mode is usually used for daytime mode when people are absent.

If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Heating initial setpoint (in 0.1 °C) valid until first Communication	-300800; <u>180</u>
Cooling initial setpoint (in 0.1 °C) valid until first Communication	-300800; <u>240</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint is used as the basis, the increase/decrease of this value is indicated.

Reduce heating setpoint (in 0.1°C) (for heating)	0200; <u>30</u>
Increase cooling setpoint (in 0.1°C) (for cooling)	0200; <u>30</u>

Eco setpoint

Eco mode is usually used for night mode.

If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Heating initial setpoint (in 0.1 °C) valid until first Communication	-300800; <u>160</u>
Cooling initial setpoint (in 0.1 °C) valid until first Communication	-300800; <u>280</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint is used as the basis, the increase/decrease of this value is indicated.

Reduce heating setpoint (in 0.1°C) (for heating)	0200; <u>50</u>
Increase cooling setpoint (in 0.1°C) (for cooling)	0200; <u>60</u>

Setpoint values for frost/heat protection (building protection)

The building protection mode is used, for example, as long as windows are open for ventilation. Setpoints for frost protection (heating) and heat protection (cooling) are determined which may not be modified from outside (no access via operating devices etc.). The building protection mode may be activated with delay, which allows you to leave the building before the controls switch to frost/heat protection mode.

Nominal value frost protection\r\n(in 0,1°C)	-300800; <u>70</u>
Activation delay	no • 5 s • • <u>5 min</u> • • 2 h
Nominal value heat protection (in 0,1°C)	-300800; <u>350</u>
Activation delay	no • 5 s • • <u>5 min</u> • • 2 h

General variables

This setting appears for the control types "Heating and Cooling" only. This is where you can decide whether to use a common variable for heating and cooling. If the 2nd stage has a common variable, this is also where you determine the control mode of the 2nd stage.

For heating and cooling	separate variables are used common variables are used for Stage 1 common variables are used for Stage 2 common variables are used for Stage 1 2
	Stage 1+2

Use variable for 4/6-way valve (only with common variable at stage1)	<u>No</u> • Yes
Control type (for stage 2 only)	• 2-point-control • PI control
Regulating variable of the 2nd Stage is on (only for stage 2 with 2-point control)	1-bit object 8-bit object

When using the variable for a 4/6 way valve: 0%...100% Heating = 66%...100% variable OFF = 50% variable

0%...100% Cooling = 33%...0% variable

6.5.1. Heating control stage 1/2

If a heating control mode is configured, one or two setting sections for the heating stages are displayed.

In the first stage, heating is controlled by a PI controller which allows to either enter control parameters or select predetermined applications.

In the second stage (therefore only in case of 2-stage heating), heating is controlled via a PI or a 2-point-control.

In stage 2, the setpoint deviation between the two stages must also be specified, i.e. beyond which setpoint undershoot the second stage is then added.

Setpoint difference between stages 1 and 2 stages (in 0.1°C) (At stage 2)	0100; <u>40</u>
Control type (at stage 2, no common variables)	• 2-point-control • PI control
Control variable is on (for stage 2 with 2-point control, no common variables)	• 1-bit object • 8-bit object

PI controller with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter specified applications

Specify the deviation from the setpoint value at which the maximum control variable value is reached, i.e. the point at which maximum heating power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint deviation is reached.

You should set the time appropriate to the heating system at this point (observe manufacturer's instructions).

Maximum control variable is reached at setpoint/actual difference of (in °C)	1 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating stage, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable should	• not be sent • send a specific value
Value (in %) (only if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for frequent applications.

Control type	• PI control
Setting of the controller by	Controller parameter specified applications
Application	Warm water heating Floor heating Convection unit Electric heating
Maximum control variable is reached at setpoint/actual difference of (in °C)	Warm water heating: 5 Floor heating: 5 Convection unit: 4 Electric heating: 4
Reset time (in min.)	Warm water heating: 150 Floor heating: 240 Convection unit: 90 Electric heating: 100

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating stage, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable should	not be sent send a specific value
Value (in %) (only if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

2-point-control (only stage 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
(is determined at a higher stage for com-	
mon variables)	

Enter the switching distance that prevents frequent on/off switching of temperatures in the threshold range.

Switching distance (in 0.1°C)	0100; 20
Stritering distance (in on or	0 00, <u>=0</u>

If separate variables are used, select whether the variable of the 2nd stage is a 1-bit object (on/off) or an 8-bit object (on with percentage value/off).

Control variable is on	• 1-bit object • 8-bit object
Value (in %) (for 8-bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating stage, e.g. for floor heating. On release, the control variable follows the rule again.

When blocked, the control variable should	not be sent send a specific value
Value (in %) only if a value is sent	<u>0</u> 100

6.5.2. Cooling control stage 1/2

If a cooling control mode is configured, one or two setting sections for the cooling levels are displayed.

In the first stage, cooling is controlled by a PI controller in which either control parameters or predetermined applications can be selected.

In the second stage (therefore only ifor 2-stage cooling), cooling is controlled via a PI or a 2-point-control.

In stage 2, the setpoint deviation between the two stages must also be specified, i.e. beyond which setpoint value undershoot the second stage is then added.

Setpoint difference between stages 1 and 2 stages (in 0.1°C) (At stage 2)	0100; <u>40</u>
Control type (at stage 2, no common variables)	• 2-point-control • PI control
Control variable is on (for stage 2 with 2-point control, no common variables)	1-bit object 8-bit object

PI controller with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter
	 specified applications

Specify the deviation from the setpoint value which reaches maximum variable value, i.e. the point at which maximum cooling power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint deviation is reached. You should set the time appropriate to the cooling system at this point (observe manufacturer's instructions).

Maximum control var at setpoint/actual diffe	1 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable should	• not be sent • send a specific value
Value (in %) (only if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for a cooling ceiling

Control type	• PI control
Setting of the controller by	Controller parameter specified applications
Application	Cooling ceiling
Maximum control variable is reached at setpoint/actual difference of (in °C)	Cooling ceiling: 5
Reset time (in min.)	Cooling ceiling: 30

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

When blocked, the control variable should	• not be sent • send a specific value
Value (in %) (only if a value is sent)	<u>0</u> 100

2-point-control (only stage 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
is determined at a higher stage for	com-
mon variables	

Enter the switching distance that prevents frequent on/off switching of temperatures in the threshold range.

Switching distance (in 0.1°C)	0100; 20
Ciritoring dictarios (iii cir c)	5 1 5 5 7 <u>2 5</u>

If separate variables are used, select whether the variable of the 2nd stage is a 1-bit object (on/off) or an 8-bit object (on with percentage value/off).

Control variable is on	• 1-bit object • 8-bit object
Value (in %) (for 8-bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable should	• not be sent • send a specific value
Value (in %) (only if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

6.5.3. Fan Coil Control

The fan coil control enables the regulation of the fan of convector heating/cooling systems.

Activate the fan coil control.

Use fan coil control	<u>No</u> • Yes
----------------------	-----------------

In fan coil control, the fan is automatically controlled by one or, in multi-level systems, several control variables for heating or cooling. Select which actuating variable(s) are to control the output. The selection depends on the type of heating/cooling control and the settings made for the actuating variables.

Output is controlled via actuating variable	Heating 1 Heating 2 Cooling 1
	Cooling 2
	Heating 1 and cooling 1
	Heating 2 and cooling 1
	Heating 1 and cooling 2
	Heating 2 and cooling 2

Select whether the first fan level should also be on when the second and third level are running and whether the second fan level should also be on when the third level is running.

Switch Level 1 on also with Level 2 and 3	<u>No</u> • Yes
Switch Level 2 on also with Level 3	<u>No</u> • Yes

Set which mode is to be active after a reset.

Mode after reset	Manual Automatic (e.g. controller actuating variable)
Manual level after reset (only if manual mode has been selected)	<u>0</u> • 1 • 2 • 3

6.6. LEDs

Set the LED mode.

LED mode	All LEDs off
	All LEDs as ambient lighting
	All LEDs individually controllable

All LEDs as ambient lighting

If all LEDs are to be used as ambient lighting, illuminate all simultaneously. Set the brightness of the LEDs, whether objects are used and whether the LEDs switch off automatically after pushing the button.

LED mode	All LEDs as ambient lighting
Brightness	0 100%; <u>30%</u>
Use objects	<u>No</u> • Yes
Object value on/off after reset (if objects are used)	0 • <u>1</u>
Use automatic switch-off after pressing a button	No • <u>Yes</u>
Switch off after (is automatic switch off is used)	1 255; 30 secs. after pressing

All LEDs individually controllable

This is where you set the brightness of the LEDs, whether objects are used and whether the LEDs switch off automatically after pushing the button.

LED mode	All LEDs individually controllable
Brightness	0 100%; <u>30%</u>
Use objects	<u>No</u> • Yes
Object value on/off after reset (if objects are used)	0 • <u>1</u>

Function LED 1 (top left) / 2 (top right) / 3 (bottom left) / 4 (bottom right)	always OFF On after pressing button for settable time On for object value = 1 / Off for object value = 0
Lighting period after pressing (if "On after pressing button for a settable time")	1 5 seconds ; <u>3 seconds</u>
Object value after reset (if "On for object value = 1 / Off for object value = 0)	0 • <u>1</u>
Use block object (if "On for object value = 1 / Off for object value = 0)	<u>No</u> • Yes

Specify here what the LEDs for temperature display should indicate.

LEDs for temperature display	display actual value only
	display only target value/base shift
	• display actual value and target value/base
	shift

6.7. Buttons

KNX eTR 205/206 Light has an area control, i.e. if you touch multiple buttons at the same time, you can activate another function. The value (0 or 1) can be set for the evaluation of the activation of the surface operation.

Set whether you want to use the screen control.

Use screen control	<u>No</u> • Yes
Use screen control	Yes
Activation object assessment	• Value 1 = active Value 0 = inactive • Value 0 = active Value 1 = inactive
Object value after reset	0 • <u>1</u>
Function	 Switch Selector switch 8 bit value 0 255 8 bit value 0 100% 16-bit floating point value Scenario recall
Value (switch)	0 • <u>1</u>
Value (8 bit value 0 255)	0 • • <u>255</u>
Value (8 bit value 0 100%)	0 • • <u>100</u>
Value in 0.1 (16 bit value floating point)	-6707600 • • 6707600; <u>10</u>
Scenario number(Scenario recall)	<u>1</u> • • 64

Press the required button for light control. The menus for the additional settings of the buttons are then displayed.

Use light 1	<u>No</u> • Yes
Use light 2 (only with KNX eTR 206 Light)	No • Yes

6.7.1. Light 1 / 2

Here you can set the time between switching and dimming and whether the dimming command is to be repeated.

Time between switching and dimming (in 0.1 s)	0 • • 50; <u>5</u>
Repeat the dim command	<u>No</u> • Yes
Repetition of the dimming command	Yes
Repeat the dim command on long button press	every 0.1 s • • every 2 s; every 0.5 s
Dimming by	100% • • 1,5%; <u>6%</u>

6.8. Logic

The device has 8 logic inputs, 2 AND and 2 OR logic gates.

Activate the logic inputs and assign object values up to 1st communication.

Use logic inputs	<u>No</u> • Yes
Object value prior to 1st communication for	
- Logic input 1 8	<u>0</u> • 1

Activate the required logic outputs

AND logic

AND logic 1/2	not active • active
---------------	---------------------

OR logic

OR logic 1/2	not active • active
--------------	---------------------

6.8.1. AND logic outputs 1/2 and OR logic outputs 1/2

The same setting options are available for AND and OR logic.

Each logic output may transmit one 1-bit or two 8-bit objects. Determine what the out put should send if logic = 1 and = 0.

1. / 2. / 3. / 4. Input	Do not use Dogic inputs 18 Logic inputs 18 Logic inputs 18 inverted all switching events that the device provides Temperature sensor malfunction = ON Temperature sensor malfunction = OFF
Output type	• a 1-bit-object • sends two 8-bit objects

If the **output type is a 1-bit object**, set the output values for the various conditions.

Output value if logic = 1	<u>1</u> •0
Output value if logic = 0	1 • <u>0</u>
Output value If block active	1 • <u>0</u>
Output value if monitoring time exceeded	1 • <u>0</u>

If the **output type is two 8-bit objects**, set the type of object and the output values for the various conditions.

Object type	• value (0255) • Percent (0100%) • Angle (0360°) • Scene call-up (063)
Output value object A if logic = 1	0 255 / 100% / 360° / 63; <u>1</u>
Output value object B if logic = 1	0 255 / 100% / 360° / 63; <u>1</u>
Output value object A if logic = 0	0 255 / 100% / 360° / 63; <u>0</u>
Output value object B if logic = 0	0 255 / 100% / 360° / 63; <u>0</u>
Output value object A If block active	0 255 / 100% / 360° / 63; <u>0</u>
Output value object B If block active	0 255 / 100% / 360° / 63; <u>0</u>
Output value object A if monitoring time exceeded	0 255 / 100% / 360° / 63; <u>0</u>
Output value object B if monitoring time exceeded	0 255 / 100% / 360° / 63; <u>0</u>

Set the output send pattern.

Transmission behaviour	on change of logic on change of logic to 1 on change of logic to 0 on change of logic and periodically on change of logic to 1 and periodically on change of logic to 0 and periodically on change of logic + object receipt on change of logic + object receipt and cyclically
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

Block

If necessary, activate the block for the logic output and set what a 1 or 0 at the block input means and what happens in the event of a block.

Use block	<u>No</u> • Yes
Assessment of the block object	• At value 1: block At value 0: release • At value 0: block At value 1: release
Blocking object value before first Communication	<u>0</u> • 1
Output behaviour when blocking	Do not send message Send block value [see above, output value if block active]
when released (with 2 second release delay)	Do not send message transmit value for current logic status

Monitoring

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without a feedback being given.

Use input monitoring	<u>No</u> • Yes
Input monitoring	•1•2•3•4 •1+2•1+3•1+4•2+3•2+4•3+4
	•1+2+3•1+2+4•1+3+4•2+3+4 •1+2+3+4
Monitoring period	5 s • • 2 h; <u>1 min</u>
Output behaviour on exceeding the monitoring time	Do not send message Send value exceeding [= value of the parameter "Monitoring period"]

6.8.2. OR LOGIC connection inputs

The OR logic connection inputs are the same as those for the AND logic. Additionally, the following inputs are available for the OR logic:

Switching output AND logic 1 Switching output AND logic 1 inverted Switching output AND logic 2 Switching output AND logic 2 inverted

Questions about the product?

You can reach the technical service of Elsner Elektronik under

Tel. +49 (0) 70 33 / 30 945-250 or service@elsner-elektronik.de

We need the following information to process your service request:

- Type of appliance (model name or item number)
- Description of the problem
- Serial number or software version
- Source of supply (dealer/installer who bought the device from Elsner Elektronik)

For questions about KNX functions:

- Version of the device application
- ETS version used for the project

