

Sewi KNXTH

Capteur combiné pour l'intérieur

Numéros d'article 70393 (blanc), 70693 (noir foncé)

Installation et réglage

1.	Description	. 3
	1.0.1. Contenu de la livraison	. 4
1.1.	Caractéristiques techniques	. 4
	1.1.1. Précision de la mesure	. 5
2.	Consignes de sécurité et d'utilisation	. 5
2.1.	Informations générales sur l'installation	. 5
3.	Installation	. 6
3.1.	Emplacement de montage et préparation	. 6
	Raccordement	
	3.2.1. Montage de la platine	. 7
	3.2.2. Montage	. 8
4.	Mise en service	. 9
4.1.	Configurer l'adresse de l'appareil	. 9
5.	Maintenance	. 9
6.	Elimination	. 9
7.	Protocole de transmission	
	Liste de tous les objets de communication	10
	Réglage des paramètres	
8.	Comportement en cas de panne de secteur/du retour de tension	
	Réglages généraux	
	Valeur mesurée de la température	
	Seuils de température	
0.4.	8.4.1. Seuil 1, 2, 3, 4	
0 5	Température régulateur PI	
0.5.	· · · · · · · · · · · · · · · · · · ·	
	8.5.1. Régulation du chauffage niveau 1/2	
0.0	8.5.2. Régulation du refroidissement niveau 1/2	
	Compensation d'été	
	Seuil humidité	
0.0.		
0.0	8.8.1. Seuil 1, 2, 3, 4	
	Régulateur PI humidité	
8.10		
0 4 4	8.10.1. Contrôle température de fluide frigorifique	
	.Humidité absolue	
	Zone de confort	
8.13	Comparateur des valeurs de réglage	
0 4 4	8.13.1.Comparateur des valeurs de réglage 1/2/3/4	
8.14	.Calculateur	
0.45	8.14.1. Calculateur 1-8	
8.15	Logique	
	8.15.1.ET logique 1-8 et OU logique 1-8	
	8.15.2. Entrées de connexion de la logique ET	
	8.15.3. Entrées de connexion de la logique OU	58

L'installation, le contrôle, la mise en service et le dépannage de l'appareil sont strictement réservés aux électriciens qualifiés.

Le présent manuel est régulièrement modifié et adapté aux versions les plus récentes du logiciel. La version des modifications (version du logiciel et date) est indiquée en pied de page de la table des matières.

Si vous employez un appareil dont la version du logiciel est plus récente, consultez le site www.elsner-elektronik.de sous la rubrique « Service » et vérifiez si une nouvelle version du manuel est disponible.

Explication des symboles contenus dans le présent manuel

Consignes de sécurité.

Consignes de sécurité pour les travaux sur les raccords électriques, composants, etc.

DANGER!

... signale la présence d'une situation dangereuse imminente pouvant entraîner la mort ou de graves blessures si elle n'est pas

AVERTISSEMENT! ... signale la présence d'une situation potentiellement dangereuse pouvant entraîner la mort ou de graves blessures si elle n'est pas évitée.

ATTENTION!

... signale la présence d'une situation potentiellement dangereuse pouvant entraîner des blessures légères ou mineures si elle n'est pas évitée.

ATTENTION! ... signale une situation pouvant entraîner des dommages matériels.

ETS

Les préréglages des paramètres sont soulignés dans les tableaux ETS.

1. Description

Le **Capteur Sewi KNX TH** pour le système de bus KNX mesure la température et l'hygrométrie et calcule le point de rosée. Via le bus, le capteur intérieur peut recevoir des valeurs externes de température et d'hygrométrie et les transformer avec ses propres données en des valeurs globales (valeurs mixtes, par ex. moyenne de la pièce).

Toutes les valeurs de mesure peuvent être utilisées pour la commande des sorties de commutation dépendant des valeurs limites. Via les portes logiques ET les et portes logiques OU, les états peuvent être reliés. Les modules multifonctions modifient les données d'entrée si besoin par calculs, interrogation d'une condition ou conversion du type de point de donnée. En outre, un comparateur de valeurs de commande peut comparer et afficher les valeurs recues via les obiets de communication.

Un régulateur intégré commande une ventilation (selon l'hygrométrie) et un chauffage/refroidissement (selon la température). Le **Sewi KNX TH** peut émettre un avertissement au bus, dès que la zone de confort selon DIN 1946 est quittée.

Fonctions:

- Mesure de la température et de l'hygrométrie (relative, absolue), respectivement avec calcul de la valeur mixte. La part de valeur de mesure interne et de mesure externe est réglable en pourcentage
- Message du bus si les valeurs de température et d'hygrométrie se situent à l'intérieur de la zone de confort (DIN 1946). Calcul du point de rosée
- Valeurs limites réglables par paramètres ou via les objets de communication
- Régulateur PI pour chauffage (à une ou deux phases) et refroidissement (à une ou deux phases) selon la température. Régulation selon des valeurs de consigne distinctes ou une température de consigne de base
- Régulateur PI pour ventilation selon l'hygrométrie: Ventilation/aération (à une phase) ou ventilation (à une ou deux phases)
- 8 portes logiques ET et 8 portes logiques OU avec chacune 4 entrées.
 Comme entrées pour les portes logiques, tous les événements de commutation ainsi que 16 entrées logiques sous forme d'objets de communication peuvent être utilisés. La sortie de chaque porte logique peut être configurée au choix comme 1 bit ou 2 x 8 bits
- 8 modules multifonctions (calculateur) pour la modification des données d'entrée par calculs, par interrogation d'une condition ou par conversion du type de donnée
- 4 comparateurs de valeurs de commande pour l'émission de valeurs minimales, maximales et moyennes. Respectivement 5 entrées pour les valeurs reçues via les objets de communication
- Compensation d'été pour refroidissements. Une température de consigne dans la pièce est adaptée à la température extérieure et la valeur minimale et maximale de la température de consigne est déterminée via une caractéristique linéaire

La configuration se réalise par le logiciel KNX ETS. Le **fichier de produit** est disponible au téléchargement sur la page d'accueil de Elsner Elektronik **www.elsner-elektronik.de** dans le menu « service ».

1.0.1. Contenu de la livraison

Capteur combiné

1.1. Caractéristiques techniques

Généralités :	
Boîtier	Matière plastique
Couleurs	Blanc similaire à blanc de sécurité RAL 9003 (socle)/ blanc gris RAL 9002 (couvercle) Noir foncé RAL 9005
Montage	Apparent, montage mural ou au plafond
Dimensions Ø x hauteur	env. 105 mm x env. 32 mm
Indice de protection	IP 30
Poids total	env. 45 g
Température ambiante	-25+80°C
Hygrométrie ambiante	595% HR, sans condensation
Température de stockage	-30+85°C
Bus KNX :	
Fluide KNX	TP1-256
Mode de configuration	Mode S
Adresses de groupe	max. 2000
Attributions	max. 2000
Objets de communication	291
Tension nominale KNX	30 V === SELV
Consommation de courant KNX	max. 10 mA
Raccordement	Bornes enfichables KNX
Durée après rétablisse- ment de la tension de bus jusqu'à ce que les données soient reçues	env. 5 secondes
Capteurs :	
Capteur de température :	
Plage de mesure	-25°C +80°C
Résolution	0,1°C
Capteur d'humidité :	
Plage de mesure	0% HR 90% HR
Résolution	0,1% HR

Le produit est en conformité avec les normes des directives U.E.

1.1.1. Précision de la mesure

Les variations de valeur mesurée dues à des sources d'interférence (voir chapitre *Lieu de montage*) doivent être corrigées dans le logiciel ETS, pour obtenir le niveau de précision spécifié par le capteur (décalage).

Lors de la **mesure de la température**, l'échauffement propre de l'appareil est pris en compte par l'électronique. Elle est compensée par le logiciel de sorte que la valeur mesurée affichée/éditée de la température intérieure concorde.

2. Consignes de sécurité et d'utilisation

2.1. Informations générales sur l'installation

L'installation, le contrôle, la mise en service et le dépannage de l'appareil sont strictement réservés aux électriciens qualifiés.

ATTENTION! Tension électrique!

L'appareil contient des composants sous tension sans protection.

- Lors de la planification et de l'installation d'installations électriques, il convient de respecter les directives, les règlements et les dispositions en vigueur dans le pays concerné.
- Assurez-vous que l'appareil ou le système peut être déconnecté.
 Lors de l'installation, débranchez tous les câbles de l'alimentation électrique et prenez des mesures de sécurité pour éviter toute mise sous tension involontaire.
- Si l'appareil est endommagé, il est interdit de le mettre en service.
- Mettre l'appareil ou l'installation hors service puis le sécuriser afin d'éviter toute utilisation accidentelle lorsqu'il n'est plus possible de garantir un fonctionnement sans danger.

L'appareil a exclusivement été conçu pour une utilisation conforme aux prescriptions décrites dans le présent manuel. En cas de modification non conforme ou de non-respect du manuel d'utilisation, tout droit à la garantie ou garantie légale cesse.

Après avoir déballé l'appareil, immédiatement l'examiner afin de déterminer tout dommage mécanique. En cas d'avaries de transport, veuillez en informer immédiatement le fournisseur.

L'appareil ne peut être utilisé que comme une installation fixe, c'est-à-dire uniquement s'il est monté dans une installation, après l'achèvement de tous les travaux d'installation et de mise en service, et uniquement dans un environnement prévu à cet effet.

La société Elsner Elektronik décline toute responsabilité pour d'éventuelles modifications des normes et standards appliqués après la date de parution du présent manuel.

3. Installation

3.1. Emplacement de montage et préparation

Installer et utiliser uniquement dans des locaux secs! Éviter la condensation.

Le Capteur Sewi KNX TH est installé apparent sur le mur ou au plafond.

En sélectionnant le lieu du montage, veuillez veiller autant que faire se peut à ce que les résultats de mesure de **température et hygrométrie** soient faussés le moins possible par des influences externes. Sources d'interférence éventuelles :

- · Exposition solaire directe
- Les courant d'air provenant des fenêtres et des portes
- Les courants d'air provenant des tuyaux menant au capteur à partir d'autres locaux ou de l'extérieur
- Réchauffement ou refroidissement de la structure sur laquelle est monté le capteur, en raison, par exemple, du rayonnement solaire, des conduites de chauffage ou d'eau froide
- conduites de raccordement et tuyaux vides reliant une zone plus froide ou plus chaude au capteur

Les variations de valeur mesurée dues à ces sources de perturbation doivent être corrigées dans le logiciel ETS, pour obtenir le niveau de précision spécifié par le capteur (décalage).

3.2. Raccordement

Lors de l'installation et de la pose des câbles sur le raccordement KNX, les directives et normes applicables pour les circuits SELV doivent être respectées!

Le **Capteur Sewi KNX TH** est monté en saillie, mais il peut également être vissé sur un boîtier encastré.

Si le **Capteur Sewi KNX TH** est installé sur un boîtier encastré, il ne doit pas y avoir de câblage avec 230 V dessus.

3.2.1. Montage de la platine

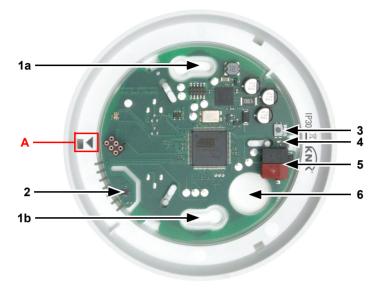


Fig. 1

- 1 a+b Trous oblongs pour fixation (espacement des trous 60 mm)
- 2 Capteurs de température, hygrométrie
- 3 Bouton-poussoir de programmation
- 4 LED de programmation
- 5 Borne KNX BUS +/-
- 6 Passage du câble
- A Marquage pour aligner le couvercle

3.2.2. Montage

Fig. 3

Ouvrez le boîtier. Pour ce faire, enlevez avec précaution le couvercle du socle. Posez sur l'évidement, par ex. avec un tournevis plat.

Fig. 4

Faites passer le câble de bus à travers le passage de câble dans le socle.

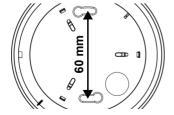


Fig. 5

Vissez le socle au mur ou au plafond.

Espacement des trous 60 mm.

Fig. 6

Raccordez le bus KNX à la borne KNX.

Fig. 7

Fermez le boîtier en mettant le couvercle et en l'enclenchant. Pour ce faire, alignez l'évidement du couvercle au marquage du socle (le détecteur de présence doit dépasser de l'ouverture dans le couvercle).

4. Mise en service

Les fentes d'aération latérales ne doivent pas être encrassés, peints ou couverts.

Après l'application de la tension de bus, l'appareil se trouve pendant environ 5 secondes dans la phase d'initialisation. Dans cette période ne peut être reçue ou envoyée aucune information par le bus.

4.1. Configurer l'adresse de l'appareil

L'adresse individuelle est attribuée via le ETS. Pour cela, il y a un bouton avec une LED de contrôle sur l'appareil (Fig. 1, n° 3+4).

L'appareil est livré avec l'adresse de bus 15.15.255. Une adresse différente peut être programmée en utilisant le ETS.

5. Maintenance

En général, il suffit d'essuyer l'appareil deux fois par an avec un chiffon doux et sec si nécessaire.

6. Elimination

Après utilisation, l'appareil doit être éliminé ou recyclé conformément aux dispositions légales. Ne le jetez pas avec les ordures ménagères !

7. Protocole de transmission

Unités :

Températures en degrés Celsius Humidité (de l'air) en % Humidité (de l'air) absolue en g/kg et/ou g/m³ Valeurs de réglage en %

7.1. Liste de tous les objets de communication

Abréviations des bannières :

- C Communication
- L Lire
- E Écrire
- T Transmettre
- A Actualiser

N°.	Texte	Fonc-	Ban- nières	Type DPT	Dimen- sion
1	Version du logiciel	Sortie	L-CT	[217.1] DPT_Version	2 octets
41	Capteur de température : Dysfonctionnement	Sortie	L-CT	[1.1] DPT_Switch	1 bit
42	Capteur de température : Valeur de mesure externe	Entrée	-ECT	[9.1] DPT_Va- lue_Temp	2 octets
43	Capteur de température : Valeur mesurée	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
44	Capteur de température : Valeur de mesure totale	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
45	Capteur de température : Demande valeur de mesure min max	Entrée	-EC-	[1.017] DPT_Trig- ger	1 bit
46	Capteur de température : Valeur de mesure minimale	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
47	Capteur de température : Valeur de mesure maximale	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
48	Capteur de température : Réinitialisation valeur de mesure min max	Entrée	-EC-	[1.017] DPT_Trig- ger	1 bit
51	Seuil 1 de la température : Valeur absolue	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
52	Seuil 1 de la température : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
53	Seuil 1 de la température : Délai de commutation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
54	Seuil 1 de la température : Délai de commutation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
55	Seuil 1 de la température : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
56	Seuil 1 de la température : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
58	Seuil 2 de la température : Valeur absolue	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
59	Seuil 2 de la température : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
60	Seuil 2 de la température : Délai de commutation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
61	Seuil 2 de la température : Délai de commutation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
62	Seuil 2 de la température : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
63	Seuil 2 de la température : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
65	Seuil 3 de la température : Valeur absolue	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
66	Seuil 3 de la température : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
67	Seuil 3 de la température : Délai de commutation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
68	Seuil 3 de la température : Délai de commutation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
69	Seuil 3 de la température : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
70	Seuil 3 de la température : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
72	Seuil 4 de la température : Valeur absolue	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
73	Seuil 4 de la température : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
74	Seuil 4 de la température : Délai de commutation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
75	Seuil 4 de la température : Délai de commutation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
76	Seuil 4 de la température : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
77	Seuil 4 de la température : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
311	Capteur d'humidité : Dysfonctionnement	Sortie	L-CT	[1.1] DPT_Switch	1 bit
314	Capteur d'humidité : Valeur de mesure externe	Entrée	-ECT	[9.7] DPT_Va- lue_Humidity	2 octets

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
315	Capteur d'humidité : Valeur mesurée	Sortie	L-CT	[9.7] DPT_Va- lue_Humidity	2 octets
316	Capteur d'humidité : Valeur de mesure totale	Sortie	L-CT	[9.7] DPT_Va- lue_Humidity	2 octets
317	Capteur d'humidité : Demande valeur de mesure min max	Entrée	-EC-	[1.017] DPT_Trig- ger	1 bit
318	Capteur d'humidité : Valeur de mesure minimale	Sortie	L-CT	[9.7] DPT_Va- lue_Humidity	2 octets
319	Capteur d'humidité : Valeur de mesure maximale	Sortie	L-CT	[9.7] DPT_Va- lue_Humidity	2 octets
320	Capteur d'humidité : Réinitialisation valeur de mesure min max	Entrée	-EC-	[1.017] DPT_Trig- ger	1 bit
331	Seuil humidité 1 : Valeur absolue	Entrée / Sortie	LECT	[9.7] DPT_Va- lue_Humidity	2 octets
332	Seuil humidité 1 : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
333	Seuil humidité 1 : Temporisation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
334	Seuil humidité 1 : Temporisation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
335	Seuil humidité 1 : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
336	Seuil humidité 1 : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
337	Seuil humidité 2 : Valeur absolue	Entrée / Sortie	LECT	[9.7] DPT_Va- lue_Humidity	2 octets
338	Seuil humidité 2 : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
339	Seuil humidité 2 : Temporisation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
340	Seuil humidité 2 : Temporisation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
341	Seuil humidité 2 : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
342	Seuil humidité 2 : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
343	Seuil humidité 3 : Valeur absolue	Entrée / Sortie	LECT	[9.7] DPT_Va- lue_Humidity	2 octets
344	Seuil humidité 3 : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
345	Seuil humidité 3 : Temporisation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
346	Seuil humidité 3 : Temporisation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
347	Seuil humidité 3 : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
348	Seuil humidité 3 : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
349	Seuil humidité 4 : Valeur absolue	Entrée / Sortie	LECT	[9.7] DPT_Va- lue_Humidity	2 octets
350	Seuil humidité 4 : (1 :+ 0 :-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
351	Seuil humidité 4 : Temporisation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
352	Seuil humidité 4 : Temporisation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
353	Seuil humidité 4 : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
354	Seuil humidité 4 : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
381	Point de rosée : Valeur mesurée	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
382	Température du fluide frigorifique : Seuil	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
383	Température du fluide frigorifique : Valeur réelle	Entrée	LECT	[9.1] DPT_Va- lue_Temp	2 octets
384	Température du fluide frigorifique : Modification de l'offset (1:+ 0:-)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
385	Température du fluide frigorifique : Offset actuel	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
386	Température du fluide frigorifique : Délai de commutation de 0 à 1	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
387	Température du fluide frigorifique : Délai de commutation de 1 à 0	Entrée	-EC-	[7.5] DPT_Time- PeriodSec	2 octets
388	Température du fluide frigorifique : Sortie TOR	Sortie	L-CT	[1.1] DPT_Switch	1 bit
389	Température du fluide frigorifique : Blocage sortie TOR	Entrée	-EC-	[1.1] DPT_Switch	1 bit
391	Humidité absolue [g/kg]	Sortie	L-CT	[14.5] DPT_Va- lue_Amplitude	4 octets
392	Humidité absolue [g/m³]	Sortie	L-CT	[14.17] DPT_Va- lue_Density	4 octets
394	Statut de l'atmosphère d'intérieur : 1 = confortable 0 = inconfortable	Sortie	L-CT	[1.1] DPT_Switch	1 bit
395	Statut de l'atmosphère d'intérieur : Texte	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
481	Thermostat : Mode HVAC (Priorité 1)	Entrée	-EC-	[20.102] DPT_HVACMode	1 octet
482	Thermostat : Mode HVAC (Priorité 2)	Entrée	LECT	[20.102] DPT_HVACMode	1 octet
483	Thermostat : Mode activation protection antigel/thermique	Entrée	LECT	[1.1] DPT_Switch	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
484	Thermostat : Blocage (1 = bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
485	Thermostat : Valeur de consigne actuelle	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
486	Thermostat : Commutation (0 : Chauffer 1 : refroidir)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
487	Thermostat : Valeur de consigne chauffage confort	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
488	Thermostat : Valeur de consigne chauffage confort (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
489	Thermostat : Valeur de consigne refroidissement confort	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
490	Thermostat : Valeur de consigne refroidissement confort (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
491	Thermostat : Décalage valeur de consigne de base 16 bits	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
492	Thermostat : Valeur de consigne veille chauffage	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
493	Thermostat : Valeur de consigne veille chauffage (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
494	Thermostat : Valeur de consigne veille refroidissement	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
495	Thermostat : Valeur de consigne veille refroidissement (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
496	Thermostat : Valeur de consigne chauffage Eco	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
497	Thermostat : Valeur de consigne chauffage Eco (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
498	Thermostat : Valeur de consigne refroidissement Eco	Entrée / Sortie	LECT	[9.1] DPT_Va- lue_Temp	2 octets
499	Thermostat : Valeur de consigne refroidissement Eco (1 :+ 0 : -)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
500	Thermostat : Valeur de réglage chauffage (niveau 1)	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
501	Thermostat : Valeur de réglage chauffage (niveau 2)	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
502	Thermostat : Valeur de mesure refroidissement niveau 1	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
503	Thermostat : Valeur de mesure refroidissement niveau 2	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
504	Régulateur température : Valeur de réglage pour soupape 4/6 voies	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
505	Thermostat : Statut du chauffage niveau 1 (1=ENCLENCHÉ 0=FERMÉ)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
506	Thermostat : Statut du chauffage niveau 2 (1=ENCLENCHÉ 0=FERMÉ)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
507	Thermostat : Statut du refroidissement niveau 1 (1=ENCLENCHÉ 0=FERMÉ)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
508	Thermostat : Statut du refroidissement niveau 2 (1=ENCLENCHÉ 0=FERMÉ)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
509	Thermostat : Statut temporisation confort	Entrée / Sortie	LECT	[1.1] DPT_Switch	1 bit
510	Thermostat : Temps de temporisation confort	Entrée	LECT	[7.5] DPT_Time- PeriodSec	2 octets
515	Compensation d'été : Température extérieure	Entrée	-ECT	[9.1] DPT_Va- lue_Temp	2 octets
516	Compensation d'été : Valeur de consigne	Sortie	L-CT	[9.1] DPT_Va- lue_Temp	2 octets
517	Compensation d'été : Blocage (1 = bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
521	Régulateur de l'humidité : Blocage (1 : bloquer)	Entrée	-EC-	[1.2] DPT_Bool	1 bit
522	Régulateur de l'humidité : Valeur de consigne	Entrée / Sortie	LECT	[9 007] DPT_Va- lue_Humidity	2 octets
523	Régulateur de l'humidité : Valeur de consigne (1:+ 0:-)	Entrée	-EC-	[1.2] DPT_Bool	1 bit
524	Régulateur de l'humidité : Valeur de réglage déshumidification	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
525	Régulateur de l'humidité : Valeur de mesure déshumidification niveau 2	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
526	Régulateur de l'humidité : Valeur de réglage humidification	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
527	Régulateur de l'humidité : Statut de la déshumidification (1=MARCHE 0=ARRÊT)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
528	Régulateur de l'humidité : Statut de la déshumidification 2 (1=MARCHE 0=ARRÊT)	Sortie	L-CT	[1.1] DPT_Switch	1 bit
529	Régulateur de l'humidité : Statut de l'humidification (1=MARCHE 0=ARRÊT)	Sortie	L-CT	[1.1] DPT_Switch	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1111	Comparateur des valeurs de réglage 1 : Entrée 1	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1112	Comparateur des valeurs de réglage 1 : Entrée 2	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1113	Comparateur des valeurs de réglage 1 : Entrée 3	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1114	Comparateur des valeurs de réglage 1 : Entrée 4	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1115	Comparateur des valeurs de réglage 1 : Entrée 5	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1116	Comparateur des valeurs de réglage 1 : Sortie	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
1117	Comparateur des valeurs de réglage 1 : Blocage (1 : bloquer)	Sortie	-EC-	[1.2] DPT_Bool	1 bit
1118	Comparateur des valeurs de réglage 2 : Entrée 1	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1119	Comparateur des valeurs de réglage 2 : Entrée 2	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1120	Comparateur des valeurs de réglage 2 : Entrée 3	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1121	Comparateur des valeurs de réglage 2 : Entrée 4	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1122	Comparateur des valeurs de réglage 2 : Entrée 5	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1123	Comparateur des valeurs de réglage 2 : Sortie	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
1124	Comparateur des valeurs de réglage 2 : Blocage (1 : bloquer)	Sortie	-EC-	[1.2] DPT_Bool	1 bit
1125	Comparateur des valeurs de réglage 3 : Entrée 1	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1126	Comparateur des valeurs de réglage 3 : Entrée 2	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1127	Comparateur des valeurs de réglage 3 : Entrée 3	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1128	Comparateur des valeurs de réglage 3 : Entrée 4	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1129	Comparateur des valeurs de réglage 3 : Entrée 5	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1130	Comparateur des valeurs de réglage 3 : Sortie	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
1131	Comparateur des valeurs de réglage 3 : Blocage (1 : bloquer)	Sortie	-EC-	[1.2] DPT_Bool	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1132	Comparateur des valeurs de réglage 4 : Entrée 1	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1133	Comparateur des valeurs de réglage 4 : Entrée 2	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1134	Comparateur des valeurs de réglage 4 : Entrée 3	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1135	Comparateur des valeurs de réglage 4 : Entrée 4	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1136	Comparateur des valeurs de réglage 4 : Entrée 5	Entrée	-EC-	[5.1] DPT_Sca- ling	1 octet
1137	Comparateur des valeurs de réglage 4 : Sortie	Sortie	L-CT	[5.1] DPT_Sca- ling	1 octet
1138	Comparateur des valeurs de réglage 4 : Blocage (1 : bloquer)	Sortie	-EC-	[1.2] DPT_Bool	1 bit
1141	Calculateur 1 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1142	Calculateur 1 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1143	Calculateur 1 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1144	Calculateur 1 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1145	Calculateur 1 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1146	Calculateur 1 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_ ASCII	14 octets
1147	Calculateur 1 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1148	Calculateur 1 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1149	Calculateur 2 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1150	Calculateur 2 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1151	Calculateur 2 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1152	Calculateur 2 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1153	Calculateur 2 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1154	Calculateur 2 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1155	Calculateur 2 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1156	Calculateur 2 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1157	Calculateur 3 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1158	Calculateur 3 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1159	Calculateur 3 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1160	Calculateur 3 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1161	Calculateur 3 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1162	Calculateur 3 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1163	Calculateur 3 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1164	Calculateur 3 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1165	Calculateur 4 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1166	Calculateur 4 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1167	Calculateur 4 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1168	Calculateur 4 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1169	Calculateur 4 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1170	Calculateur 4 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1171	Calculateur 4 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1172	Calculateur 4 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1173	Calculateur 5 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1174	Calculateur 5 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1175	Calculateur 5 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1176	Calculateur 5 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1177	Calculateur 5 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1178	Calculateur 5 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1179	Calculateur 5 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1180	Calculateur 5 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1181	Calculateur 6 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1182	Calculateur 6 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1183	Calculateur 6 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1184	Calculateur 6 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1185	Calculateur 6 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1186	Calculateur 6 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1187	Calculateur 6 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1188	Calculateur 6 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1189	Calculateur 7 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1190	Calculateur 7 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1191	Calculateur 7 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1192	Calculateur 7 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1193	Calculateur 7 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1194	Calculateur 7 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1195	Calculateur 7 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1196	Calculateur 7 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1197	Calculateur 8 : Entrée E1	Entrée	LECT	En fonct. du régl.	4 octets
1198	Calculateur 8 : Entrée E2	Entrée	LECT	En fonct. du régl.	4 octets
1199	Calculateur 8 : Entrée E3	Entrée	LECT	En fonct. du régl.	4 octets
1200	Calculateur 8 : Sortie A1	Sortie	L-CT	En fonct. du régl.	4 octets
1201	Calculateur 8 : Sortie A2	Sortie	L-CT	En fonct. du régl.	4 octets
1202	Calculateur 8 : Texte de condition	Sortie	L-CT	[16.0] DPT_String_AS- CII	14 octets
1203	Calculateur 8 : Statut de surveillance	Sortie	L-CT	[1.1] DPT_Switch	1 bit
1204	Calculateur 8 : Blocage (1 : bloquer)	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1391	Entrée logique 1	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1392	Entrée logique 2	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1393	Entrée logique 3	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1394	Entrée logique 4	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1395	Entrée logique 5	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1396	Entrée logique 6	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1397	Entrée logique 7	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1398	Entrée logique 8	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1399	Entrée logique 9	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1400	Entrée logique 10	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1401	Entrée logique 11	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1402	Entrée logique 12	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1403	Entrée logique 13	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1404	Entrée logique 14	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1405	Entrée logique 15	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1406	Entrée logique 16	Entrée	-EC-	[1.2] DPT_Bool	1 bit
1411	logique 1 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1412	logique 1 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1413	logique 1 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1414	logique 1 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1415	logique 2 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1416	logique 2 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1417	logique 2 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1418	logique 2 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1419	logique 3 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1420	logique 3 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1421	logique 3 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1422	logique 3 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1423	logique 4 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1424	logique 4 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1425	logique 4 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1426	logique 4 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1427	logique 5 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1428	logique 5 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1429	logique 5 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1430	logique 5 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1431	logique 6 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1432	logique 6 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1433	logique 6 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1434	logique 6 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1435	logique 7 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1436	logique 7 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1437	logique 7 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1438	logique 7 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1439	logique 8 ET : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1440	logique 8 ET : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1441	logique 8 ET : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1442	logique 8 ET : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1443	Logique 1 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1444	Logique 1 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1445	Logique 1 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1446	Logique 1 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1447	Logique 2 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit

N°.	Texte	Fonc- tion	Ban- nières	Type DPT	Dimen- sion
1448	Logique 2 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1449	Logique 2 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1450	Logique 2 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1451	Logique 3 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1452	Logique 3 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1453	Logique 3 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1454	Logique 3 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1455	Logique 4 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1456	Logique 4 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1457	Logique 4 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1458	Logique 4 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1459	Logique 5 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1460	Logique 5 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1461	Logique 5 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1462	Logique 5 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1463	Logique 6 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1464	Logique 6 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1465	Logique 6 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1466	Logique 6 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1467	Logique 7 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1468	Logique 7 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1469	Logique 7 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1470	Logique 7 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit
1471	Logique 8 OU : Sortie TOR 1 bit	Sortie	L-CT	[1.2] DPT_Bool	1 bit
1472	Logique 8 OU : Sortie A 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1473	Logique 8 OU : Sortie B 8 bit	Sortie	L-CT	[5.10] DPT Value_1_Ucount	1 octet
1474	Logique 8 OU : Blocage	Entrée	-EC-	[1.1] DPT_Switch	1 bit

8. Réglage des paramètres

8.1. Comportement en cas de panne de secteur/ du retour de tension

Comportement en cas de panne d'alimentation du bus :

L'appareil ne transmet rien.

Comportement au retour de la tension de bus ou de la tension auxiliaire et suivant la programmation ou la réinitialisation :

L'appareil transmet toutes les valeurs de sortie de commutation mesurées conformément au comportement de transmission configuré dans le bloc des paramètres avec les temporisations qui sont déterminées dans le bloc de paramètres « Réglages généraux ».

8.2. Réglages généraux

Déterminez les caractéristiques de base de la transmission de données.

Temporisation de transmission après la mise sous tension et la programmation pour :		
les valeurs mesurées	<u>5 s</u> • • 2 h	
Seuil et sortie TOR	<u>5 s</u> • • 2 h	
Objets régulateurs	<u>5 s</u> • • 2 h	
Objets de comparaison et de calcul	<u>5 s</u> • • 2 h	
Objets logiques	<u>5 s</u> • • 2 h	
Taux maximal de télégrammes	• 1 message par seconde	
	•	
	• 5 messages par seconde	
	•	
	20 messages par seconde	

8.3. Valeur mesurée de la température

Spécifiez si l'obstacle doit être transmis, lorsque le capteur est défectueux.

Utiliser un obstacle	Non • Oui

Vous pouvez ajuster la valeur mesurée à transmettre à l'aide de l'offset.

Offset en 0,1°C	-5050 ; 0

L'appareil peut également calculer **une valeur mixte** à partir de sa propre valeur mesurée et une valeur externe. Si souhaité, déterminez le calcul de la valeur mixte. Si une proportion externe est utilisée, tous les réglages suivants se réfèrent (seuils, etc.) à la valeur mesurée totale.

Utiliser la valeur mesurée externe	<u>Non</u> • Oui
Ext. Proportion de la valeur mesurée totale	5% • 10% • • <u>50%</u> • • 100%
Le comportement de la transmission pour la valeur mesurée interne et totale	 pas cyclique en cas de modification en cas de modification et cyclique
A partir de la modification de (si transmis en cas de modification)	0,1°C • 0,2°C • <u>0,5°C</u> • • 5,0°C
Cycle de transmission (si transmis cycliquement)	5 s • <u>10 s</u> • • 2 h

La **valeur mesurée minimale et maximale** peut être mémorisée et transmise au bus. Avec les objets « Réinitialisation température valeur minimale/maximale », les valeurs peuvent être réinitialisées à la valeur mesurée actuelle. Les valeurs ne sont pas sauvegardées après RAZ.

Utiliser la valeur minimale et maximale	Non • Oui
---	-----------

8.4. Seuils de température

Activez les seuils de température nécessaires. Les menus pour le réglage supplémentaire des seuils s'affichent alors.

Utiliser le seuil 1/2/3/4	Oui • <u>Non</u>
---------------------------	------------------

8.4.1. Seuil 1, 2, 3, 4

Seuil

Déterminez dans quels cas les **seuils et les temporisations** reçues par objet doivent rester maintenues. Le paramètre n'est pris en compte que si le réglage par objet est activé ci-dessous. Sachez que le réglage « après le retour de tension et de la programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets est ignoré).

Les seuils et les temporisations	
qui sont reçues par objet de communica- tion ne doivent	 pas rester maintenues après le retour de tension après le retour de tension et de la
programmation	

Le seuil peut être réglée via les paramètres directement dans le programme d'application ou prescrite par objet de communication via le bus.

Prescription du seuil par paramètre :

Réglez directement un seuil et une hystérèse.

Prescription de seuil par	Paramètres • Objets de communication
Seuil en 0,1°C	-300 800 ; <u>200</u>

Prescription du seuil par objet de communication :

Prescrivez le seuil telle qu'elle est reçue par le bus. En principe, une nouvelle valeur peut être reçue ou uniquement un ordre pour le relèvement et l'abaissement.

A la première mise en service, un seuil doit s'appliquer jusqu'à la 1ère communication d'un nouveau seuil. Dans le cas d'un appareil qui a été déjà mis en service, le dernier seuil communiqué peut être utilisé. En principe une plage de température est prescrite à laquelle le seuil peut être modifié (limite de valeur d'objet).

Un seuil défini reste maintenu jusqu'à ce qu'une nouvelle valeur ou une modification soit transmise. La valeur actuelle prescrite est enregistrée, afin qu'en cas de défaillance de tension elle reste maintenue et soit à nouveau disponible au retour de tension de service.

Prescription de seuil par	Paramètres • Objets de communication
Seuil de démarrage par 0,1°C s'applique jusqu'à la 1ère communication	-300 800 ; <u>200</u>
Seuil de l'objet (min) en 0,1°C	<u>-300</u> 800
Seuil de l'objet (max) en 0,1°C	-300 <u>800</u>
Type de modification de seuil	Valeur absolue • Relèvement / abaissement
Pas de progression (en cas de modification par le relèvement / l'abaissement)	<u>0,1°C</u> • • 5°C

Indépendamment du type de seuil prescrit, vous réglez l'hystérèse.

Réglage de l'hystérèse	en % • <u>absolue</u>
Hystérèse en 0,1°	01100 ; <u>50</u>
Hystérèse en % du seuil	0 50; <u>20</u>

Sortie TOR

Activez le comportement de la sortie TOR en cas de dépassement supérieur / inférieur du seuil. Le délai de commutation de la sortie peut être défini via les objets ou directement en tant que paramètre.

La sortie est pour (VL = seuil)	VL au-dessus = 1 VL - hyst. au-dessous 0 VL au-dessus = 0 VL - hyst. au-dessous 1 VL au-dessous = 1 VL + hyst. au-dessus 0 VL au-dessous = 0 VL + hyst. au-dessus 1
Temporisation configurée via les objets (en secondes)	<u>Non</u> • Oui
Délai de commutation de 0 à 1 (Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication)	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Délai de commutation de 1 à 0 (Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication)	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
La sortie TOR transmet	en cas de modification en cas de modification sur 1 en cas de modification sur 0 en cas de modification et cyclique en cas de modification sur 1 et cyclique en cas de modification sur 0 et cyclique
Cycle (uniquement en cas de transmission cyclique)	<u>5 s</u> • 10 s • 30 s • 2 h

Blocage

On peut verrouiller la sortie TOR via un objet.

Utiliser le verrouillage de la sortie TOR	Non • Oui

Spécifiez ici les prescriptions pour le comportement de la sortie au cours du blocage, si le verrouillage est activé.

Évaluation de l'objet de blocage	• à la valeur 1 : verrouiller à la valeur 0 : débloquer • à la valeur 0 : verrouiller à la valeur 1 : débloquer	
Valeur de l'objet de blocage avant la 1ère communication	<u>0</u> • 1	
Comportement de la sortie TOR		
Au blocage	Ne transmettre aucun message transmettre 0 transmettre 1	
Au déverrouillage (avec temporisation de déverrouillage de 2 secondes)	[en fonction du réglage de « Sortie TOR transmet »]	

Le comportement de la sortie TOR au déverrouillage dépend de la valeur du paramètre « La sortie de commutation transmet » (voir « sortie de commutation »)

La sortie TOR transmet en cas de modification	Ne transmettre aucun message Transmission du statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1	 Ne transmettre aucun message si la sortie TOR = 1 → transmet 1
La sortie TOR transmet un message en cas de modification sur 0	 Ne transmettre aucun message si la sortie TOR = 0 → transmet 0
La sortie TOR transmet en cas de modification et cyclique	Transmet le statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1 et cyclique	si la sortie TOR = 1 → transmet 1
La sortie TOR transmet un message en cas de modification sur 0 et cyclique	si la sortie TOR = 0 → transmet 0

8.5. Température régulateur Pl

Activez ici les régulations que vous souhaitez utiliser.

Utiliser la régulation	<u>Non</u> • Oui	
------------------------	------------------	--

Régulation générale

Déterminez dans quels cas les **seuils et les temporisations** reçues par objet doivent être maintenues. Le paramètre n'est pris en compte que si le réglage par objet est activé ci-dessous. Sachez que le réglage « après le retour de tension et de la programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets est ignoré).

Les valeurs de consigne et les temporisations	
qui sont reçues par objet de communica- tion ne doivent	 pas rester maintenues après le retour de tension après le retour de tension et de la
programmation	

Pour une régulation de la température ambiante conforme aux besoins, les modes Confort, Mise en veille, Eco et Protection des bâtiments sont utilisés.

Confort en cas de présence,

Mise en veille en cas de courte absence,

Eco comme mode nocturne et

Protection contre le gel et la chaleur (protection des bâtiments) par ex. avec la fenêtre ouverte.

Dans les réglages du régulateur de la température, les températures de consigne sont déterminées pour les différents modes. Le mode qui doit être utilisé est déterminé via les objets. Un changement de mode peut être enclenché manuellement ou automatiquement (p. ex. par la temporisation, contact fenêtre).

Le **mode** peut être commuté via deux objets de 8 bit qui ont une priorité différente. Objets

- « ... Mode HVAC (Priorité 2) » pour la commutation dans le fonctionnement quotidien et
- « ... Mode HVAC (Priorité 1) » pour la commutation centrale avec une priorité supérieure.

Les objets sont codés comme suit :

- 0 = Auto
- 1 = Confort
- 2 = Mise en veille
- 3 = Éco
- 4 = Protection des bâtiments

En alternative, trois objets peuvent être utilisés, auquel cas un objet commute alors entre le mode Eco et Mise en veille et active les deux autres modes Confort et/ou le mode de Protection contre le gel et la chaleur. L'objet Confort bloque dans ce cas l'objet Eco / Mise en veille, la priorité la plus élevée ayant pour objet la protection contre la chaleur et le gel. Objets

- « ... Mode (1 : Eco | 0 : Mise en veille) »,
- « ... Mode activation confort et
- « ... Mode activation protection contre le gel et la chaleur

Commutation de mode via	deux objets 8 bits (modes HVAC)
	• trois objets 1 bit

Déterminez ce qu'il faut exécuter comme **mode après une réinitialisation** (p. ex. une panne de courant, la réinitialisation de la ligne via le bus). (Dysfonctionnement). Configurez alors le **verrouillage** de la régulation de la température via l'objet de blocage.

Mode après réinitialisation	Confort Mise en veille Eco Protection des bâtiment
Comportement de l'objet de blocage avec la valeur	• 1 = bloquer 0 = déverrouiller • 0 = bloquer 1 = déverrouiller
Valeur de l'objet de blocage après réinitialisation	<u>0</u> • 1

Déterminez quand les **valeurs de réglage** actuelles de la régulation doivent être **transmises** au bus. La transmission cyclique offre plus de sécurité si un message ne devait pas arriver au destinataire. Aussi un contrôle cyclique via l'actionneur peut être réglé.

Transmettre les valeurs de réglage	en cas de modification en cas de modification et cyclique
à partir de la modification de (en % absolu)	110 ; <u>2</u>
Cycle (si transmis cycliquement)	5 s • • <u>5 min</u> • • 2 h

L'**objet du statut** indique l'état actuel de la valeur de mesure de (0% = ARRETE, > 0% = MARCHE) et peut, par exemple, servir à la visualisation ou à arrêter la pompe de chauffage, dès que le chauffage n'est plus activé.

Transmission de l'objet du statut	 en cas de modification en cas de modification sur 1 en cas de modification sur 0 en cas de modification et cyclique en cas de modification sur 1 et cyclique en cas de modification sur 0 et cyclique
Cycle (si transmis cycliquement)	5 s • • <u>5 min</u> • • 2 h

Définissez alors le **mode de régulation.** Les chauffages et/ou les refroidissements peuvent être commandés à deux niveaux.

Mode de régulation	Chauffage à un niveau Chauffage à deux niveaux Refroidissement à un niveau Refroidissement à deux niveaux Chauffage à un niveau + refroidissement à un niveau Chauffage à deux niveaux + refroidissement à un niveau Chauffage à deux niveaux +
	Chauffage a deux niveaux + refroidissement à deux niveaux

Valeurs de consignes générales

Soit les valeurs de consigne peuvent être prescrites séparément pour chaque mode, soit la valeur de consigne Confort est utilisée comme valeur de base.

Si la régulation du chauffage *et* du refroidissement est utilisée, le réglage peut être sélectionné en plus « séparément avec l'objet de commutation ». Les systèmes qui sont utilisés en été comme refroidissement et en hiver comme chauffage, peuvent être inversés de cette façon.

En cas d'utilisation de la valeur de base, seul l'écart par rapport à la valeur de consigne Confort est indiquée pour les autres modes (p. ex. 2°C de moins pour le mode de Mise en veille).

Réglage des valeurs de consigne	avec valeurs de consignes distinctes avec Objet de commutation avec des valeurs de consigne séparées Objet de commutation avec la valeur de consigne Confort comme base avec Objet de commutation avec la valeur de consigne Confort comme base sans Objet de commutation
Comportement de l'objet de commutation avec la valeur (Avec objet de commutation)	• <u>0</u> = Chauffer 1 = Refroidir 1 = Chauffer 0 = Refroidir

Valeur de l'objet de commutation après réi-	<u>0</u> • 1
nitialisation	
(Avec objet de commutation)	

L'**incrément** pour la modification de la valeur de consigne est prescrit. Que la modification ne soit active que temporairement (ne pas enregistrer), ou même restée enregistrée après le retour de tension (et la programmation), est défini dans le premier alinéa du « Réglage général ». Cela s'applique également à une temporisation Confort.

Pas de progression pour les modifications	1 50; 10
de la valeur de consigne	_
(en 0,1°C)	

A partir du mode Eco, donc en mode nuit, le régulateur peut être inversé à nouveau sur le mode Confort. De cette façon, la valeur de consigne Confort peut être maintenue plus longtemps, par exemple s'il y a des hôtes. La durée de cette temporisation Confort est prescrite. À l'échéance du temps de prolongation du Confort, la régulation commute à nouveau en mode Eco.

Temps de prolongation Confort en secon-	136000 ; <u>3600</u>
des	
(uniquement en mode Eco à activer)	

Valeur de consigne Confort

Le mode Confort est utilisé en principe pour le fonctionnement de jour en cas de présence. Pour la valeur de consigne Confort, une valeur de mise en service est définie et une plage de température peut être modifiée dans la valeur de consigne.

Valeur de consigne chauffage/refroidisse-	-300800 ; <u>210</u>
ment (en 0,1°C)	
s'applique jusqu'à la 1ère communication	
(non à la sauvegarde de la valeur de consi-	
gne après la programmation)	

Si des valeurs de consigne sont réglées séparément :

Valeur d'objet min. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>160</u>
Valeur d'objet max. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>280</u>

Si la valeur de consigne Confort est utilisée comme base :

Si la valeur de consigne Confort est utilisée comme base, le diminution/augmentation de cette valeur est indiqué.

Valeur de consigne de base minimale (en 0,1°C)	-300800 ; <u>160</u>
Valeur de consigne de base maximale (en 0,1°C)	-300800 ; <u>280</u>

Diminution de jusqu'à (en 0,1°C)	0200 ; <u>50</u>
Augmentation de jusqu'à (en 0,1°C)	0200 ; <u>50</u>

Si la valeur de consigne Confort est utilisée comme base sans objet de commutation, une zone neutre est prescrite avec le mode de réglage "Chauffage *et* Refroidissement, afin qu'aucune commutation directe du chauffage au refroidissement ne se produise.

Zone neutre entre le chauffage et le refroi-	1100 ; <u>50</u>
dissement	_
(si on chauffe ET on refroidit)	

Valeur de consigne mise en veille

Le mode de mise en veille est généralement utilisé pour un fonctionnement de jour en cas d'absence.

Si des valeurs de consigne sont réglées séparément :

Une valeur de consigne de mise en service est définie et une plage de température, à laquelle la valeur de consigne peut être modifiée.

Valeur de consigne chauffage/refroidisse- ment (en 0,1°C) s'applique jusqu'à la 1ère communication	-300800 ; <u>210</u>
Valeur d'objet min. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>160</u>
Valeur d'objet max. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>280</u>

Si la valeur de consigne Confort est utilisée comme base :

Si la valeur de consigne Confort est utilisée comme base, le diminution/augmentation de cette valeur est indiqué.

Abaissement valeur de consigne chauffage (en 0,1°C) avec chauffage	0200 ; <u>30</u>
Relèvement de la valeur de consigne de refroidissement (en 0,1°C) avec refroidissement	0200 ; <u>30</u>

Valeur de consigne chauffage Eco

Le mode Eco est généralement utilisé pour le mode nuit.

Si des valeurs de consigne sont réglées séparément :

Une valeur de consigne de mise en service est définie et une plage de température, à laquelle la valeur de consigne peut être modifiée.

Valeur de consigne chauffage/refroidisse-	-300800 ; <u>210</u>
ment (en 0,1°C)	
s'applique jusqu'à la 1ère communication	

Valeur d'objet min. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>160</u>
Valeur d'objet max. chauffage/refroidissement (en 0,1°C)	-300800 ; <u>280</u>

Si la valeur de consigne Confort est utilisée comme base :

Si la valeur de consigne Confort est utilisée comme base, le diminution/augmentation de cette valeur est indiqué.

Abaissement valeur de consigne chauffage (en 0,1°C) avec chauffage	0200 ; <u>50</u>
Relèvement de la valeur de consigne de refroidissement (en 0,1°C) avec refroidissement	0200 ; <u>60</u>

Valeurs de consigne protection contre le gel / la chaleur (protection des bâtiments)

Le mode protection des bâtiments est par exemple quand les fenêtres sont ouvertes pour la ventilation. Des valeurs de consigne pour la protection contre le gel (chauffage) et la chaleur (refroidissement) sont prescrites, qui ne peuvent pas être modifiées de l'extérieur (pas d'accès aux éléments de commande, etc.). Le mode protection des bâtiments peut être activé avec une temporisation, le bâtiment ne pouvant pas encore être quitté, avant que la régulation ne commute en mode de protection contre le gel/la chaleur.

Valeur de consigne protection contre le gel (en 0,1°C)	-300800 ; <u>70</u>
Temporisation de l'activation	Aucune • 5 s • • <u>5 min</u> • • 2 h
Valeur de consigne protection contre la chaleur (en 0,1°C)	-300800 ; <u>350</u>
Temporisation de l'activation	Aucune • 5 s • • <u>5 min</u> • • 2 h

Valeurs de réglage générales

Ce réglage ne s'affiche qu'avec les modes de réglage « Chauffage *et* Refroidissement ». Dans ce cas, il est possible de déterminer si pour le chauffage et le refroidissement, une valeur d'ajustage commune doit être utilisée. Si le niveau 2 a une valeur de réglage commune, la régulation du niveau 2 est déterminée dans ce cas.

Pour le chauffage et le refroidissement on	• utilise des valeurs de réglage distinctes
	• des valeurs de réglage communes sont
	utilisées pour le niveau 1
	• des valeurs de réglage communes sont
	utilisées pour le niveau 2
	Des valeurs de réglage communes sont
	utilisées pour les niveaux 1+2

Utiliser valeur de réglage pour soupape 4/6 voies (uniquement pour les valeurs de réglage communes au niveau 1)	<u>Non</u> • Oui
Mode de régulation (uniquement pour le niveau 2)	Régulation 2 pointsRégulateur Pl
Valeur de mesure du niveau 2 Variable de contrôle en service (uniquement pour le niveau 2 avec régulation 2 points)	Objet 1 bit Objet 8 bit

S'applique en utilisant la valeur de réglage pour une soupape 4/6 :

0%...100% chauffage = 66%...100% valeur de réglage

ARRÊT = 50% valeur de réglage

0%...100% refroidissement = 33%...0% valeur de réglage

8.5.1. Régulation du chauffage niveau 1/2

Si une régulation de chauffage est configurée, une ou deux sections de réglage s'affichent pour les niveaux de chauffage.

Au niveau 1 le chauffage est commandé via un régulateur PI, pour lequel il est possible de sélectionner au choix les paramètres de réglage ou les applications prescrites.

Au niveau 2 (donc uniquement pour un chauffage à deux niveaux) le chauffage est commandé via une régulation PI ou une régulation à 2 niveaux.

En outre pour le niveau 2, la différence de la valeur de consigne entre les deux niveaux doit être prescrite, c'est-à-dire à partir de quel dépassement inférieur de la valeur de consigne le niveau 2 doit être activé.

Différence de la valeur de consigne entre le niveau 1 et le niveau 2. (en 0,1°C) (pour le niveau 2)	0100 ; <u>40</u>
Mode de régulation (Pour le niveau 2, pas de valeurs de réglage communes)	Régulation 2 points Régulateur Pl
La valeur de réglage est (Pour le niveau 2 avec régulation 2 points, aucune valeur de réglage commune)	Objet 1 bit Objet 8 bit

Régulateur PI avec des paramètres de régulation :

Ce réglage permet de saisir individuellement les paramètres pour le régulateur Pl.

Mode de régulation	Régulateur Pl
Paramétrage du régulateur par	Paramètres du régulateur
	applications prescrites

Prescrivez à quel écart de la valeur de consigne, la valeur de réglage maximale est atteinte, c'est-à-dire à partir de quand le chauffage maximal est utilisé.

Le temps de compensation indique la vitesse de réaction de la régulation aux écarts de la valeur de consigne. Pour un temps de compensation court, la régulation réagit par

un relèvement rapide de la valeur de réglage. Pour un temps de compensation prolongé, la régulation réagit plus lentement et requiert plus de temps jusqu'à ce que la valeur de réglage requise pour l'écart de la valeur de consigne soit atteinte.

Dans ce cas il faut régler un temps adapté au système de chauffage (observer les instructions du fabricant).

La valeur de réglage maximale est atteinte à une différence de consigne / réelle de (en °C)	0 <u>5</u>
Temps de compensation (en minutes)	1255; <u>30</u>

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Définissez ici une valeur supérieure 0 (= ARRET), pour obtenir une chaleur de base, par exemple pour les chauffages au sol.

Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) (Si une valeur est transmise)	<u>0</u> 100

Pour une valeur de réglage commune du chauffage et du refroidissement 0 est toujours transmis comme valeur définie.

Régulateur PI avec une application prescrite :

Ce réglage définit des paramètres définis pour de nombreuses applications.

Mode de régulation	Régulateur PI
Paramétrage du régulateur par	Paramètres du régulateur applications prescrites
Application	Chauffage de l'eau Chauffage au sol Ventilo-convecteur Chauffage électrique
La valeur de réglage maximale est atteinte à une différence de consigne / réelle de (en °C)	Chauffage de l'eau : 5 Chauffage au sol : 5 Ventilo-convecteur : 4 Chauffage électrique : 4
Temps de compensation (en minutes)	Chauffage de l'eau : 150 Chauffage au sol : 240 Ventilo-convecteur : 90 Chauffage électrique : 100

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Définissez ici une valeur supérieure 0 (= ARRET), pour obtenir une chaleur de base, par exemple pour les chauffages au sol.

Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) (Si une valeur est transmise)	<u>0</u> 100

Pour une valeur de réglage commune du chauffage et du refroidissement 0 est toujours transmis comme valeur définie.

Régulation à 2 points (uniquement niveau 2) :

La régulation à 2 points est utilisée pour des systèmes commutés uniquement en MAR-CHE/ARRET.

Mode de régulation (est défini ci-dessus pour des valeurs de	Régulation 2 points
mesure communes)	

Prescrivez l'hystérèse qui empêche la mise en marche/arrêt fréquente dans la plage limite de températures.

Hystérèse (en 0,1°C) 0100 ; <u>20</u>

Si des valeurs de réglage distinctes sont utilisées, alors spécifiez si la valeur de réglage du niveau 2 est un objet 1 bit (marche/arrêt) ou un objet 8 bit (marche avec valeur en pourcentage/arrêt.

La valeur de réglage est	Objet 1 bit Objet 8 bit
valeur (en %) (un objet 8-bit)	0 <u>100</u>

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Définissez ici une valeur supérieure 0 (= ARRET), pour obtenir une chaleur de base, par exemple pour les chauffages au sol. Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) uniquement si une valeur est transmise	<u>0</u> 100

8.5.2. Régulation du refroidissement niveau 1/2

Si une régulation du refroidissement est configurée, une et/ou deux sections de réglage s'affichent pour les niveaux de refroidissement.

Au niveau 1 le refroidissement est commandé via un régulateur PI en saisissant au choix les paramètres de régulation ou les applications prescrites.

Au niveau 2 (donc uniquement pour le refroidissement à deux niveaux), le refroidissement est commandé via une régulation PI ou à 2 niveaux.

En outre pour le niveau 2, la différence de la valeur de consigne entre les deux niveaux doit être prescrite, c'est-à-dire à partir de quel dépassement de la valeur de consigne le niveau 2 doit être activé.

Différence de la valeur de consigne entre le niveau 1 et le niveau 2. (en 0,1°C) (pour le niveau 2)	0100 ; <u>40</u>
Mode de régulation (Pour le niveau 2, pas de valeurs de réglage communes)	Régulation 2 points Régulateur Pl
La valeur de réglage est (Pour le niveau 2 avec régulation 2 points, aucune valeur de réglage commune)	Objet 1 bit Objet 8 bit

Régulateur PI avec des paramètres de régulation :

Ce réglage permet de saisir individuellement les paramètres pour le régulateur Pl.

Mode de régulation	Régulateur PI
	 Paramètres du régulateur applications prescrites

Spécifiez à partir de quel écart de la valeur de consigne la valeur de réglage maximale est atteinte, c'est-à-dire à partir de quel moment le refroidissement maximal est utilisé. Le temps de compensation indique la vitesse de réaction de la régulation aux écarts de la valeur de consigne. Pour un temps de compensation court, la régulation réagit par un relèvement rapide de la valeur de réglage. Pour un temps de compensation prolongé, la régulation réagit plus lentement et requiert plus de temps jusqu'à ce que la valeur de réglage requise pour l'écart de la valeur de consigne soit atteinte. Dans ce cas, un temps adapté au système de refroidissement doit être réglé (respecter les instructions du fabricant).

La valeur de réglage maximale est atteinte à une différence de consigne / réelle de (en °C)	0 <u>5</u>
Temps de compensation (en minutes)	1255; 30

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) (Si une valeur est transmise)	<u>0</u> 100

Pour une valeur de réglage commune du chauffage et du refroidissement 0 est toujours transmis comme valeur définie.

Régulateur PI avec une application prescrite :

Ce réglage définit des paramètres fixes disponibles pour un plafond froid.

Mode de régulation	Régulateur Pl
Paramétrage du régulateur par	Paramètres du régulateur applications prescrites
Application	Plafond froid
La valeur de réglage maximale est atteinte à une différence de consigne / réelle de (en °C)	Plafond froid : 5
Temps de compensation (en minutes)	Plafond froid : 30

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) (Si une valeur est transmise)	<u>0</u> 100

Régulation à 2 points (uniquement niveau 2) :

La régulation à 2 points est utilisée pour des systèmes commutés uniquement en MAR-CHE/ARRET.

Mode de régulation est défini ci-dessus pour des valeurs de	Régulation 2 points
mesure communes	

Prescrivez l'hystérèse qui empêche la mise en marche/arrêt fréquente dans la plage limite de températures.

Hystérèse (en 0,1°C)	0100 ; <u>20</u>
----------------------	------------------

Si des valeurs de réglage distinctes sont utilisées, alors spécifiez si la valeur de réglage du niveau 2 est un objet 1 bit (marche/arrêt) ou un objet 8 bit (marche avec valeur en pourcentage/arrêt.

La valeur de réglage est	Objet 1 bit Objet 8 bit
valeur (en %) (un objet 8-bit)	0 <u>100</u>

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En bloquant, la valeur de réglage	ne doit pas être transmise doit transmettre une valeur définie
valeur (en %) (Si une valeur est transmise)	<u>0</u> 100

Pour une valeur de réglage commune du chauffage et du refroidissement 0 est toujours transmis comme valeur définie.

8.6. Compensation d'été

Avec la compensation d'été, la valeur de consigne de la température ambiante peut être automatiquement adaptée à un refroidissement en cas de températures extérieures élevées. Le but est de ne pas créer une trop grande différence entre la température intérieure et extérieure afin de maintenir la consommation d'énergie faible.

Activez la compensation d'été.

Utiliser la compensation d'été	Non • Oui	

Avec les points 1 et 2, définissez la plage de température extérieure dans laquelle la valeur de consigne de la température intérieure est adaptée de façon linéaire. Déterminez ensuite quelle valeur de consigne de la température intérieure doit s'appliquer endessous du point 1 et au-dessus du point 2.

Valeurs standard selon DIN EN 60529

Point 1 : Température extérieure 20°C, valeur de consigne 20°C. Point 2 : Température extérieure 32°C, valeur de consigne 26°C.

Description des courbes caractéristiques :	
Point 1 température extérieure (en 0,1°C)	0 500 ; <u>200</u>
Point 2 température extérieure (en 0,1°C)	0 500 ; <u>320</u>
en dessous du point 1 la valeur de consigne est (en 0,1°C)	0 500 ; <u>200</u>
au-dessus du point 2 la valeur de consigne est (en 0,1°C)	0 500 ; <u>260</u>

Réglez le comportement de transmission de la compensation d'été.

Comportement de transmission	par cycle en cas de modification en cas de modification et par cycle
à partir de la modification de (si transmis en cas de modification)	0,1°C • <u>0,2°C</u> • 0,5°C • 1°C • 2°C • 5°C
Cycle de transmission (si transmis par cycle)	5 s 2 h ; <u>1 min</u>

Activez si besoin le verrouillage de la compensation d'été et déterminez ce qu'un 1 ou 0 signifie à l'entrée de verrouillage et ce qui se passe en cas de verrouillage.

Utiliser le verrouillage	<u>Non</u> • Oui
Évaluation de l'objet de verrouillage	Pour la valeur 1 : verrouiller pour la valeur 0 : déverrouiller Pour la valeur 0 : verrouiller pour la valeur 1 : déverrouiller
Valeur de l'objet de verrouillage avant la 1ère communication	<u>0</u> • 1

Action en cas de verrouillage	• ne pas transmettre • transmettre la valeur
Valeur (en 0,1°C) (si une valeur est envoyée en cas de verrouillage)	0 500 ; <u>200</u>

8.7. Seuil humidité

Spécifiez si l'obstacle doit être transmis, lorsque le capteur est défectueux.

Utiliser un obstacle

Vous pouvez ajuster la valeur mesurée à transmettre à l'aide de l'offset.

Offset en 0,1% H.R.	-5050 ; 0

L'appareil peut également calculer **une valeur mixte** à partir de sa propre valeur mesurée et une valeur externe. Si souhaité, déterminez le calcul de la valeur mixte. Si une proportion externe est utilisée, tous les réglages suivants se réfèrent (seuils, etc.) à la valeur mesurée totale.

Utiliser la valeur mesurée externe	<u>Non</u> • Oui
Ext. Proportion de la valeur mesurée totale	5% • 10% • • <u>50%</u> • • 100%
Le comportement de la transmission pour la valeur mesurée interne et totale	 pas cyclique en cas de modification en cas de modification et cyclique
A partir de la modification de (si transmis en cas de modification)	0,1% rF • 0,2% rF • 0,5% rF • <u>1,0% rF</u> • ± 20,0% rF
Cycle de transmission (si transmis cycliquement)	5 s • <u>10 s</u> • • 2 h

La **valeur mesurée minimale et maximale** peut être mémorisée et transmise au bus. Avec les objets "Réinitialisation humidité valeur minimale/maximale", les valeurs peuvent se référer aux valeurs mesurées actuelles. Les valeurs ne sont pas sauvegardées après RAZ.

Utiliser la valeur minimale et maximale	<u>Non</u> • Oui
---	------------------

8.8. Seuil humidité

Activez les seuils d'humidité (de l'air) nécessaires. Les menus pour le réglage supplémentaire des seuils s'affichent alors.

Utiliser le seuil 1/2/3/4 Ou	ui • <u>Non</u>
------------------------------	-----------------

8.8.1. Seuil 1, 2, 3, 4

Seuil

Déterminez dans quels cas les **seuils et les temporisations** reçues par objet doivent rester maintenues. Le paramètre n'est pris en compte que si le réglage par objet est activé ci-dessous. Sachez que le réglage « après le retour de tension et de la programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets est ignoré).

Les temporisations qui sont reçues par objet de communication	
Les seuils et les temporisations ne doivent	 pas rester maintenues_ après le retour de tension après le retour de tension et de la
programmation	

Le seuil peut être réglé via les paramètres directement dans le programme d'application ou prescrite par objet de communication via le bus.

Prescription de la valeur limite par paramètre :

Réglez directement un seuil et une hystérèse.

Prescription de valeur limite par	Paramètres • Objets de communication
Seuil en 0,1% rF	1 1000 ; <u>650</u>

Prescription de la valeur limite par objet de communication :

Prescrivez le seuil tel qu'il est reçu par le bus. En principe, une nouvelle valeur peut être reçue ou uniquement un ordre pour le relèvement et l'abaissement.

A la première mise en service, un seuil doit s'appliquer jusqu'à la 1ère communication d'un nouveau seuil. Dans le cas d'un appareil qui a été déjà mis en service, le dernier seuil communiqué peut être utilisé. En principe une plage d'humidité de l'air est prescrite à laquelle le seuil peut être modifié (limite de valeur d'objet).

Un seuil défini reste maintenu jusqu'à ce qu'une nouvelle valeur ou une modification soit transmise. La valeur actuelle prescrite est enregistrée, afin qu'en cas de défaillance de tension elle reste maintenue et soit à nouveau disponible au rétablissement de la tension de service.

Prescription de valeur limite par	Paramètres • Objets de communication
Valeur limite de démarrage en 0,1% rF s'applique jusqu'à la 1ère communication	1 1000 ; <u>650</u>
Valeur limite de l'objet (min) en 0,1% rF	<u>1</u> 1000
Valeur limite de l'objet (min en 0,1% rF	1 <u>1000</u>

Type de modification de valeur limite	Valeur absolue • Relèvement / abaissement
Pas de progression (en cas de modification par le relèvement / l'abaissement)	0,1% rF • • <u>2,0% rF</u> • ± 20,0% rF

Indépendamment du type de valeur limite prescrite, vous réglez l'hystérèse.

Réglage de l'hystérèse	en % • <u>absolue</u>
Hystérèse en 0,1% rF	01000 ; <u>100</u>
Hystérèse en % (Relatif au seuil)	0 50; <u>20</u>

Sortie TOR

Activez le comportement de la sortie TOR en cas de dépassement supérieur / inférieur du seuil. Le délai de commutation de la sortie peut être définie via les objets ou directement en tant que paramètre.

La sortie est pour (VL = seuil)	VL au-dessus = 1 VL - hyst. au-dessous = VL au-dessus = 0 VL - hyst. au-dessous = VL au-dessous = 1 VL + hyst. au-dessus
	= 0 • VL au-dessous = 0 VL + hyst. au-dessus = 1
Temporisation configurée via les objets (en secondes)	Non • Oui
Délai de commutation de 0 à 1 (Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication)	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Délai de commutation de 1 à 0 (Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication)	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
La sortie TOR transmet	en cas de modification en cas de modification sur 1 en cas de modification sur 0 en cas de modification et cyclique en cas de modification sur 1 et cyclique en cas de modification sur 0 et cyclique
Cycle (uniquement en cas de transmission cyclique)	<u>5 s</u> • 10 s • 30 s • 2 h

Blocage

On peut verrouiller la sortie TOR via un objet.

Utiliser le verrouillage de la sortie TOR	<u>Non</u> • Oui
---	------------------

Spécifiez ici les prescriptions pour le comportement de la sortie au cours du blocage, si le blocage est activé.

Évaluation de l'objet de blocage	à la valeur 1 : verrouiller à la valeur 0 : débloquer à la valeur 0 : verrouiller à la valeur 1 : débloquer	
Valeur de l'objet de blocage avant la 1ère communication	<u>0</u> • 1	
Comportement de la sortie TOR		
Au blocage	Ne transmettre aucun message transmettre 0 transmettre 1	
Au déverrouillage (avec temporisation de déverrouillage de 2 secondes)	[en fonction du réglage de « sortie TOR transmet »]	

Le comportement de la sortie TOR au déverrouillage dépend de la valeur du paramètre « La sortie TOR transmet » (voir « sortie TOR »)

La sortie TOR transmet en cas de modification	Ne transmettre aucun messageTransmission du statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1	 Ne transmettre aucun message si la sortie TOR = 1 → transmet 1
La sortie TOR transmet un message en cas de modification sur 0	 Ne transmettre aucun message si la sortie TOR = 0 → transmet 0
La sortie TOR transmet en cas de modifica- tion et cyclique	Transmet le statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1 et cyclique	si la sortie TOR = 1 → transmet 1
La sortie TOR transmet un message en cas de modification sur 0 et cyclique	si la sortie TOR = 0 → transmet 0

8.9. Régulateur PI humidité

Si vous activez la régulation de l'humidité, vous pouvez entreprendre ensuite les réglages du mode de régulation, des valeurs de consigne, de l'humidification et de la déshumidification.

Utiliser le réglage de l'humidité	Non • Oui
othiser is regiage as i flammate	11011 · Oui

Régulation générale

Avec le capteur **Capteur Sewi KNX TH** permet de réguler une déshumidification à un ou deux niveaux ou une humidification / déshumidification combinée.

Mode de régulation	Déshumidification à un niveau
	Humidification à deux niveaux
	•Humidifier et déshumidifier

Configurez le verrouillage de la régulation de l'humidification par un objet de blocage.

Comportement de l'objet de blocage avec la valeur	• 1 = bloquer 0 = déverrouiller • 0 = bloquer 1 = déverrouiller
Valeur de l'objet de blocage avant la 1ère communication	0 • <u>1</u>

Déterminez quand les valeurs de réglage actuelles de la régulation doivent être transmises au bus. La transmission cyclique offre plus de sécurité si un message ne devait pas arriver au destinataire. Il est possible également de régler une surveillance par cycle via un actionneur.

Transmettre les valeurs de réglage	en cas de modification en cas de modification et cyclique
Cycle de transmission (uniquement en cas de transmission cyclique)	5 s • • <u>5 min</u> • • 2 h

L'objet du statut affiche l'état actuel de la valeur de réglage de la sortie (0 = ARRET, >0 = MARCHE) et peut par exemple être utilisé pour la visualisation.

Transmet/transmission de l'objet du statut	en cas de modification en cas de modification sur 1 en cas de modification sur 0 en cas de modification et cyclique en cas de modification sur 1 et cyclique en cas de modification sur 0 et cyclique
Cycle de transmission (uniquement en cas de transmission cyclique)	5 s • • <u>5 min</u> • • 2 h

Valeur de consigne du régulateur

Déterminez dans quels cas la **valeur de consigne** reçue par objet doit rester maintenue. Sachez que le réglage « après le retour de tension et de la programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets de communication est ignoré).

La valeur de consigne	
qui est reçu par objet de communication ne doit	 pas rester maintenue après le retour de tension après le retour de tension et de la
programmation	

A la première mise en service, une **valeur de consigne** doit être prescrite, qui s'applique jusqu'à la première communication d'une nouvelle valeur de consigne. Pour un appareil déjà mis en service, la dernière valeur de consigne communiquée doit être utilisée. En principe une plage d'humidité de l'air est prescrite en modifiant la valeur de consigne (**limitation de valeur d'objet**).

Spécifiez la valeur de consigne du bus telle qu'elle doit être reçue. En principe, une nouvelle valeur peut être reçue ou uniquement un ordre pour le relèvement et l'abaissement.

Une valeur de consigne définie reste maintenue jusqu'à ce qu'une nouvelle valeur ou une modification soit transmise. La valeur actuelle prescrite est enregistrée, afin qu'en cas de défaillance de tension elle reste maintenue et soit à nouveau disponible au rétablissement de la tension de service.

Valeur de consigne en % s'applique jusqu'à la 1ère communication (non à la sauvegarde de la valeur de consi- gne après la programmation)	0 100 ; <u>50</u>
Valeur limite de l'objet (min) en %	0100 ; <u>30</u>
Valeur limite de l'objet (max) en %	0100 ; <u>70</u>
Type de modification de la valeur de consigne	<u>Valeur absolue</u> • Relèvement / abaissement
Pas de progression (en cas de modification par le relèvement / l'abaissement)	1% • <u>2%</u> • 3% • 5% • 10%

Pour le mode de régulation "Humidification et déshumidification" une zone neutre est prescrite, afin qu'une commutation directe d'humidification à déshumidification peut être évitée.

Zone neutre entre humidification et déshi	ı- 050 ; <u>10</u>
midification en %	_
(uniquement si humidifié ET déshumidifié	ý

L'humidification est activée lorsque l'humidité (de l'air) relative est inférieure ou égale à la valeur de consigne - valeur de la zone neutre.

Humidification et/ou déshumidification

En fonction du mode de régulation s'affichent des sections de réglage pour l'humidification et la déshumidification niveau (1/2).

Au cours de la déshumidification à deux niveaux, la différence de la valeur de consigne entre les deux niveaux doit être spécifiée, c'est-à-dire à partir de quel niveau inférieur à la valeur de consigne le 2ème niveau doit être activé.

Différence de la valeur de consigne entre le	050 ; 10
niveau 1 et le niveau 2. Niveau en %	_
(uniquement pour le niveau 2)	

Spécifiez à partir de quel écart de la valeur de consigne la valeur de réglage maximale est atteinte, c'est-à-dire à partir de quel moment la puissance maximale est utilisée. Le temps de compensation indique la vitesse de réaction de la régulation aux écarts de la valeur de consigne. Pour un temps de compensation court, la régulation réagit par un relèvement rapide de la valeur de réglage. Pour un temps de compensation prolon-

gé, la régulation réagit plus lentement et requiert plus de temps jusqu'à ce que la valeur de réglage requise pour l'écart de la valeur de consigne soit atteinte.

Dans ce cas, un temps adapté au système d'humidification/de déshumidification (en fonction des instructions du fabricant) doit être réglé.

	aleur de réglage maximale est atteinte r une différence de consigne / réelle 6	150 ; <u>5</u>
Tem	nps de compensation en minutes	1255 ; <u>3</u>

Ensuite indiquez encore ce qui est transmis en cas de régulation verrouillée. Au déverrouillage, la valeur de réglage suit à nouveau la régulation.

En blocant, la valeur de réglage	• ne doit pas être transmise • doit transmettre une valeur définie
Valeur en %	<u>0</u> 100
(Si une valeur est transmise)	_

8.10. Seuil point de rosée

Le capteur **Capteur Sewi KNX TH** calcule la température du point de rosée et peut transmettre la valeur via le bus.

Comportement de transmission	 pas cyclique en cas de modification en cas de modification et cyclique
A partir de la modification de (si transmis en cas de modification)	0,1°C • 0,2°C • 0,5°C • <u>1,0°C</u> • 2,0°C • 5,0°C
Cycle de transmission (si transmis cycliquement)	5 s • <u>10 s</u> • 30 s • 1 min • • 2 h

Activez le contrôle de la température du fluides frigorifiques, si besoin. Le menu pour le réglage supplémentaire des seuils s'affiche alors.

Utiliser le contrôle de la température des	Non • Oui
fluides frigorifiques	

8.10.1. Contrôle température de fluide frigorifique

Pour la température du fluide frigorifique un seuil peut être réglé, en fonction de la température actuelle du point de rosée (offset/écart). La sortie TOR du contrôle de la température du fluide frigorifique peut avertir en cas de formation d'eau de condensation dans le système et/ou activer la prise de contre-mesures appropriées.

Seuil

Seuil = température du point de rosée + offset

Déterminez dans quels cas **l'offset** reçu par objet doit rester maintenu. Sachez que le réglage « après le retour de tension et de la programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets de communication est ignoré).

La valeur de consigne	
qui est reçu par objet de communication ne doit	 pas rester maintenu après le retour de tension après le retour de tension et de la
programmation	

A la première mise en service, un **offset** doit être prescrit, qui s'applique jusqu'à la 1ère communication d'un nouvel offset. Pour un appareil déjà mis en service, le dernier offset communiqué doit être utilisé.

Un offset défini reste maintenu jusqu'à ce qu'une nouvelle valeur ou une modification soit transmise. La valeur actuelle prescrite est enregistrée, afin qu'en cas de défaillance de tension elle reste maintenue et soit à nouveau disponible au rétablissement de la tension de service.

Offset en °C s'applique jusqu'à la 1ère communication	0200 ; <u>30</u>
Pas de progression pour modification Offset	0,1°C • 0,2°C • 0,3°C • 0,4°C • 0,5°C • 1°C • 2°C • 3°C • 4°C • 5°C
Réglage de l'hystérèse	en % • <u>absolue</u>
Hystérèse du seuil en % (en cas de réglage en %)	0 50 ; <u>20</u>
Hystérèse du seuil, par 0,1°C (Pour le réglage absolu)	0 1000 ; <u>50</u>
Le seuil transmet	pas cyclique en cas de modification en cas de modification et cyclique
A partir de la modification de (si transmis en cas de modification)	<u>0,1°C</u> • 0,2°C • 0,5°C • 1,0°C • 2,0°C • 5,0°C
Cycle de transmission (si transmis cycliquement)	5 s • <u>10 s</u> • 30 s • 1 min • • 2 h

Sortie TOR

Le délai de commutation de la sortie peut être définie via les objets ou directement en tant que paramètre.

La sortie est pour (VL = seuil)	VL au-dessus = 1 VL - hyst. au-dessous = 0 VL au-dessus = 0 VL - hyst. au-dessous = 1 VL au-dessous = 1 VL + hyst. au-dessus = 0 VL au-dessous = 0 VL + hyst. au-dessus = 1
Temporisation configurée via les objets (en secondes)	<u>Non</u> • Oui
Délai de commutation de 0 à 1 Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Délai de commutation de 1 à 0 Si la temporisation est réglée via les objets : valide jusqu'à la 1ère communication	<u>aucune</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
La sortie TOR transmet	en cas de modification en cas de modification sur 1 en cas de modification sur 0 en cas de modification et cyclique en cas de modification sur 1 et cyclique en cas de modification sur 0 et cyclique
Cycle de transmission (uniquement en cas de transmission cyclique)	<u>5 s</u> • 10 s • 30 s • 2 h

Verrouillage

On peut verrouiller la sortie TOR via un objet. Saisissez ici les prescriptions pour le comportement de la sortie au cours du blocage.

Utiliser le verrouillage de la sortie TOR	Non • Oui
Évaluation de l'objet de blocage	• à la valeur 1 : verrouiller à la valeur 0 : débloquer • à la valeur 0 : verrouiller à la valeur 1 : débloquer
Valeur de l'objet de blocage avant la 1ère communication	<u>0</u> • 1
Comportement de la sortie TOR	
Au blocage	Ne transmettre aucun message transmettre 0 transmettre 1
Au déverrouillage (avec temporisation de déverrouillage de 2 secondes)	[en fonction du réglage de « Sortie TOR transmet »]

Le comportement de la sortie TOR au déverrouillage dépend de la valeur du paramètre « La sortie TOR transmet » (voir « sortie TOR »)

La sortie TOR transmet en cas de modification	Ne transmettre aucun message Transmission du statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1	 Ne transmettre aucun message si la sortie TOR = 1 → transmet 1
La sortie TOR transmet en cas de modification sur 0	 Ne transmettre aucun message si la sortie TOR = 0 → transmet 0
La sortie TOR transmet en cas de modification et cyclique	Transmet le statut de la sortie TOR
La sortie TOR transmet un message en cas de modification sur 1 et cyclique	si la sortie TOR = 1 → transmet 1
La sortie TOR transmet un message en cas de modification sur 0 et cyclique	si la sortie TOR = 0 → transmet 0

8.11. Humidité absolue

L'hygrométrie absolue de l'air est saisie par **Sewi KNX TH** et peut être transmise au bus.

Utiliser l'humidité absolue	Non • Oui
Comportement de transmission	 pas cyclique en cas de modification en cas de modification et cyclique
A partir de la modification de (si transmis en cas de modification)	0,1 g • 0,2 g • <u>0,5 g</u> • 1,0 g • 2,0 g • 5,0 g
Cycle de transmission (si transmis cycliquement)	5 s • <u>10 s</u> • 30 s • 2 h

8.12. Zone de confort

Le capteur **Capteur Sewi KNX TH** peut transmettre un message au bus, si la zone de confort est quittée. De cette façon, l'observation de la norme DIN 1946 peut par exemple être contrôlée (valeurs standard) ou il est possible de définir une propre zone de confort.

Utiliser la zone de confort	Non • Oui	

Prescrivez le **comportement de transmission**, un **Texte** pour la zone de confort et d'inconfort et comment doit être **la valeur objet**.

Comportement de transmission	pas rester maintenu cyclique en cas de modification en cas de modification et cyclique
Texte pour confortable	[texte libre, max. 14 caractères]
Texte pour inconfortable	[texte libre, max. 14 caractères]
La valeur objet est de	• confortable = 1 inconfortable = 0 confortable = 0 inconfortable = 1
Cycle de transmission (si transmis cycliquement)	<u>5 s</u> • <u>10 s</u> • 30 s • 2 h

Définissez la zone de confort, dans laquelle vous indiquez des valeurs minimales et maximales pour la température et l'humidité. Les valeurs standard indiquées sont conformes à la norme DIN 1946

Température maximale en °C (Standard 26°C)	25 40 ; <u>26</u>
Température minimale en °C (Standard 20°C)	10 21 ; <u>20</u>
Humidité maximale relative en °C (Standard 65%)	52 90 ; <u>65</u>
Humidité minimale relative en °C (Standard 30%)	10 43 ; <u>30</u>
Humidité maximale absolue en 0,1g/kg (Standard 115 g/kg)	50 200 ; <u>115</u>

Hystérèse de la température : 1°C Hystérèse de l'humidité relative : 2% rF Hystérèse de l'humidité absolue : 2 g/kg

8.13. Comparateur des valeurs de réglage

Les deux comparateurs de valeurs de réglage intégrés permettent la transmission de valeurs maximales, minimales et moyennes.

Utiliser le comparateur 1/2/3/4	<u>Non</u> • Oui
---------------------------------	------------------

8.13.1. Comparateur des valeurs de réglage 1/2/3/4

Définissez ce que le comparateur des valeurs de réglage doit transmettre et activez les objets d'entrée à utiliser. En outre, le comportement de mesure et de blocage peut être réglé.

La sortie fournit	Valeur maximale Valeur minimale la valeur moyenne
Utiliser l'entrée 1 / 2 / 3 / 4 / 5	Non • Oui
La sortie transmet	 En cas de modification de la sortie en cas de modification de la sortie et de façon cyclique à la réception d'un objet d'entrée à la réception d'un objet d'entrée et cyclique
Cycle de transmission (si transmis cycliquement)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h
A partir de la modification de (si transmis en cas de modification)	1% • 2% • 5% • <u>10%</u> • 20% • 25% • 50%
Évaluation de l'objet de blocage	 à la valeur 1 : verrouiller à la valeur 0 : débloquer à la valeur 0 : verrouiller à la valeur 1 : débloquer
Valeur de l'objet de blocage avant la 1ère communication	0 • 1
Comportement de la sortie TOR	
Au blocage	ne pas transmettre de message Transmettre la valeur
valeur transmise (en %)	0 100
En déverrouillant la sortie transmet (avec temporisation de déverrouillage de 2 secondes)	la valeur actuelle la valeur actuelle après la réception d'un objet

8.14. Calculateur

Activez le calculateur multifonctionnel avec lequel il est possible de modifier les données d'entrée par calcul, interrogation d'une condition ou conversion du type de point de données Les menus pour l'autre réglage du calculateur s'affichent alors.

Calculateur 1/2/3/4/5/6/7/8	No • Oui

8.14.1. Calculateur 1-8

Déterminez dans quels cas les valeurs d'entrée reçues par objet doivent être maintenues. Sachez que le réglage « après remise sous tension et programmation » ne doit pas être utilisé pour la première mise en service, étant donné que les réglages d'usine sont toujours utilisés jusqu'à la 1ère communication (le réglage via les objets est ignoré).

Maintener	
les valeurs d'entrée reçues par objet de communication	 pas après le rétablissement de la tension après le rétabliss. de la tension et programmation

Sélectionnez la fonction et réglez le type d'entrée et les valeurs de démarrage pour l'entrée 1 et l'entrée 2.

Fonction (E = entrée)	• Condition : E1 = E2 • Condition : E1 > E2 • Condition : E1 > E2 • Condition : E1 < E2 • Condition : E1 - E2 > E3 • Condition : E1 - E2 > E3 • Condition : E1 - E2 Montant >= E3 • Calcul : E1 + E2 • Calcul : E1 - E2 • Calcul : E1 - E2 • Calcul : E1 - E2 Montant • Calcul : Sortie 1 = E1 × X + Y Sortie 2 = E2 × X + Y • Conversion : Généralités 0 4 294 967 295
Tolérance de comparaison (avec la condition E1 = E2)	<u>0</u> 4 294 307 233
Type d'entrée	[Possibilités de sélection selon la fonction] • 1 bit • 1 octet (0255) • 1 octet (0%100%) • 1 octet (0°360°) • 2 octets compteur sans signe • 2 octets compteur avec signe • Virgule flottante 2 octets • 4 octets compteur sans signe • 4 octets compteur sans signe • Virgule flottante 4 octets
Valeur de démarrage E1 / E2 / E3	[Plage d'entrée en fonction du type d'entrée]

Conditions

Lors de l'interrogation des conditions, vous réglez le type de sortie et les valeurs de sortie dans divers états :

Type de sortie	1 bit 1 octet (0255) 1 octet (0%100%) 1 octet (0%360°) 2 octets compteur sans signe 2 octets compteur avec signe Virgule flottante 2 octets 4 octets compteur sans signe 4 octets compteur sans signe Virgule flottante 4 octets
Valeur de sortie (le cas échéant valeur de sortie A1 / A2)	
avec les conditions remplies	<u>0</u> [Plage d'entrée en fonction du type de sortie]
avec les conditions non remplies	<u>0</u> [Plage d'entrée en fonction du type de sortie]
en cas de dépassement de la période de surveillance	<u>0</u> [Plage d'entrée en fonction du type de sortie]
en cas de blocage	<u>0</u> [Plage d'entrée en fonction du type de sortie]

Réglez le comportement de la transmission de la sortie.

La sortie transmet	en cas de modification en cas de modification et après une réinitialisation en cas de modification et par cycle lors de la réception d'un objet d'entrée el par cycle
Type de la modification (uniquement pour les transmissions en cas de modification)	à chaque modification en cas de modification sur condition remplie en cas de modification sur condition non remplie
Cycle de transmission (si transmis par cycle)	5 s 2 h ; <u>10 s</u>

Déterminez quel texte est émis avec les conditions remplies / non remplies

Texte avec les conditions remplies	[texte libre, max. 14 caractères]
Texte avec les conditions non remplies	[texte libre, max. 14 caractères]

Déterminez la temporisation de la transmission le cas échéant.

Temporisation de la transmission en cas de modification sur condition remplie	<u>aucune</u> • 1 s • • 2 h
Temporisation de la transmission en cas de modification sur condition non remplie	aucune • 1 s • • 2 h

Calculs et conversion

Pour les calculs et la conversion, déterminez les valeurs de sortie dans divers états :

Valeur de sortie (le cas échéant A1 / A2)	
en cas de dépassement de la période de surveillance	<u>0</u> [Plage d'entrée en fonction du type de sortie]
en cas de blocage	<u>0</u> [Plage d'entrée en fonction du type de sortie]

Réglez le comportement de la transmission de la sortie.

La sortie transmet	en cas de modification en cas de modification et après une réinitialisation en cas de modification et par cycle lors de la réception d'un objet d'entrée et par cycle
à partir de la modification de (uniquement pour les calculs en cas de modification)	1 [Plage d'entrée en fonction du type d'entrée]
Cycle de transmission (si transmis par cycle)	5 s 2 h ; <u>10 s</u>

En cas de **calculs de la forme Sortie 1 = E1 x X + Y | Sortie 2 = E2 x X + Y** définissez les variables X et Y. Les variables peuvent avoir un signe positif ou négatif, 9 chiffres avant ou 9 chiffres après la virgule.

Formule pour la sortie A1 : A1 = E1 \times X + Y		
X	1,00 [entrée libre]	
Υ	0,00 [entrée libre]	
Formule pour la sortie A2 : A2 = E2 × X + Y		
X	1,00 [entrée libre]	
Υ	0,00 [entrée libre]	

Autres réglages pour toutes les formules

Activez la surveillance d'entrée si nécessaire. Déterminez quelles entrées sont surveillées, dans quel cycle les entrées sont surveillées et quelle valeur l'objet « État de surveillance » doit avoir, si la période de surveillance est dépassée sans qu'une information retour n'ait lieu.

Utiliser la surveillance d'entrée	<u>Non</u> • Oui
Surveillance de	• <u>E1</u> • <u>E2</u> • E3 • E1 et E2 • E1 et E3 • E2 et E3 • E1 et E2 et E3 [selon la fonction]
Période de la surveillance	5 s • • 2 h ; <u>1 min</u>
Valeur de l'objet « État de surveillance » en cas de dépassement de la période	0 • <u>1</u>

Activez si besoin le verrouillage du calculateur et déterminez ce qu'un 1 ou 0 signifient à l'entrée de verrouillage et ce qui se passe en cas de verrouillage.

Utiliser le verrouillage	Non • Oui
Évaluation de l'objet de verrouillage	Pour la valeur 1 : verrouiller pour la valeur 0 : déverrouiller Pour la valeur 0 : verrouiller pour la valeur 1 : déverrouiller
valeur avant la 1ère communication	<u>0</u> • 1
Comportement de sortie au blocage	• ne rien transmettre • transmettre la valeur
au déverrouillage	comme comportement de la transmission [voir ci-dessus] envoyer immédiatement la valeur actuelle

8.15. Logique

L'appareil fournit 16 entrées logiques, huit éléments logiques ET et huit éléments logiques OU.

Activez les entrées logiques et attribuez les valeurs des objets jusqu'à la 1ère communication.

Utiliser les entrées logiques	Oui • Non
Valeur d'objet avant la 1ère communication	pour:
- Entrée logique 1	<u>0</u> • 1
- Entrée logique	<u>0</u> • 1
- Entrée logique 16	<u>0</u> • 1

Activez les sorties logiques requises.

ET Logique

Logique 1 ET	inactivé • activé
ET logique	inactivé • activé
Logique 8 ET	<u>inactivé</u> • activé

OU logique

Logique 1 OU	inactivé • activé
OU logique	inactivé • activé
Logique 8 OU	<u>inactivé</u> • activé

8.15.1. ET logique 1-8 et OU logique 1-8

Pour la logique ET et la logique OU, les mêmes possibilités de configuration sont disponibles.

Chaque sortie logique peut envoyer un objet 1 bit ou deux objets 8 bits. Déterminez à chaque fois ce que la sortie envoie avec la logique = 1 et = 0.

1. 2. 3. 4. Entrée	 ne pas utiliser Entrée logique 116 Entrée logique 116 inversée tous les événements de commutation que l'appareil met à disposition (voir Entrées de connexion de la logique ET / OU)
Type de sortie	• un objet 1 bit • deux objets 8 bits

S le **type de sortie est un objet 1 bit**, déterminez les valeurs de sortie pour différents états.

Valeur de sortie si logique = 1	<u>1</u> •0
Valeur de sortie si logique = 0	1 • <u>0</u>
Valeur de sortie Si le blocage est actif	1 • <u>0</u>
Valeur de sortie si période de surveillance dépassée	1 • <u>0</u>

Si le **type de sortie est deux objets 8 bits**, déterminez le type d'objets et les valeurs de sortie pour différents états.

Type d'objet	• Valeur (0255) • Pourcentage (0100%) • Angle (0360°) • Appel de scènes (0127)
Valeur de sortie objet A si logique = 1	0 255 / 100% / 360° / 127 ; <u>1</u>
Valeur de sortie objet B si logique = 1	0 255 / 100% / 360° / 127 ; <u>1</u>
Valeur de sortie objet A si logique = 0	0 255 / 100% / 360° / 127 ; <u>0</u>
Valeur de sortie objet B si logique = 0	0 255 / 100% / 360° / 127 ; <u>0</u>
Valeur de sortie objet A Si le blocage est actif	0 255 / 100% / 360° / 127 ; <u>0</u>
Valeur de sortie objet B Si le blocage est actif	0 255 / 100% / 360° / 127 ; <u>0</u>
Valeur de sortie objet A si période de surveillance dépassée	0 255 / 100% / 360° / 127 ; <u>0</u>
Valeur de sortie objet B si période de surveillance dépassée	0 255 / 100% / 360° / 127 ; <u>0</u>

Réglez le comportement de la transmission de la sortie.

Comportement de transmission	en cas de modification de la logique en cas de modification de la logique à 1 en cas de modification de la logique à 0 en cas de modification de la logique et cycliquement en cas de modification de la logique à 1 et cycliquement en cas de modification de la logique à 0 et cycliquement en cas de modification de la logique à 0 et cycliquement en cas de modification de la logique + réception de l'objet en cas de modification de la logique + réception de l'objet et par cycle
Cycle de transmission (si transmis par cycle)	5 s • <u>10 s</u> • • 2 h

Verrouillage

Activez si besoin le verrouillage de la sortie logique et déterminez ce qu'un 1 ou 0 signifie à l'entrée de verrouillage et ce qui se passe en cas de verrouillage.

Utiliser le verrouillage	<u>Non</u> • Oui
Évaluation de l'objet de verrouillage	Pour la valeur 1 : verrouiller pour la valeur 0 : déverrouiller Pour la valeur 0 : verrouiller pour la valeur 1 : déverrouiller
Valeur de l'objet de verrouillage avant la 1ère communication	<u>0</u> • 1
Comportement de sortie au blocage	Ne transmettre aucun télégramme Envoyer valeur de verrouillage [voir ci-dessus, Valeur de sortie si blocage est activé]
au déverrouillage (avec délai de déverrouillage de 2 secon- des)	[Transmettre la valeur pour l'état logique actuel]

Surveillance

Activez la surveillance d'entrée si nécessaire. Déterminez quelles entrées doivent être surveillées, dans quel cycle les entrées sont surveillées et quelle valeur l'objet « Etat de surveillance » doit avoir, si la période de surveillance est dépassée sans qu'une information retour n'ait lieu.

Utiliser la surveillance d'entrée	<u>Non</u> • Oui		
Surveillance de l'entrée	•1•2•3•4		
	•1+2•1+3•1+4•2+3•2+4•3+4		
	•1+2+3•1+2+4•1+3+4•2+3+4		
	• <u>1 + 2 + 3 + 4</u>		
Période de la surveillance	5 s • • 2 h ; <u>1 min</u>		
Comportement de sortie en cas de dépas-	Ne transmettre aucun télégramme		
sement du temps de surveillance	Envoyer la valeur de dépassement [=		
	Valeur du		
	paramètre « Période de surveillance »]		

8.15.2. Entrées de connexion de la logique ET

Ne pas utiliser Entrée logique 1 Entrée logique 1 inversée

Entrée logique 2

Entrée logique 2 inversée

Entrée logique 3

Entrée logique 3 inversée

Entrée logique 4

Entrée logique 4 inversée

Entrée logique 5

Entrée logique 5 inversée

Entrée logique 6

Entrée logique 6 inversée

Entrée logique 7

Entrée logique 7 inversée

Entrée logique 8

Entrée logique 8 inversée

Entrée logique 9

Entrée logique 9 inversée

Entrée logique 10

Entrée logique 10 inversée

Entrée logique 11

Entrée logique 11 inversée

Entrée logique 12

Entrée logique 12 inversée

Entrée logique 13

Entrée logique 13 inversée

Entrée logique 14

Entrée logique 14 inversée

Entrée logique 15

Entrée logique 15 inversée

Entrée logique 16

Entrée logique 16 inversée

Dysfonctionnement capteur de température MARCHE

Dysfonctionnement capteur de température ARRET

Dysfonctionnement capteur d'humidité MARCHE

Dysfonctionnement capteur d'humidité = ARRÊT

Sortie TOR 1 température

Sortie TOR 1 température inversée

Sortie TOR 2 température

Sortie TOR 2 température inversée

Sortie TOR 3 température

Sortie TOR 3 température inversée

Sortie TOR 4 température

Sortie TOR 4 température inversée

Sortie TOR 1 humidité

Sortie TOR 1 humidité inversée

Sortie TOR 2 humidité

Sortie TOR 2 humidité inversée

Sortie TOR 3 humidité

Sortie TOR 3 humidité inversée

Sortie TOR 4 humidité

Sortie TOR 4 humidité inversée

Sortie TOR température fluide frigorifique

Sortie TOR température fluide frigorifique inversé

L'atmosphère d'intérieur est agréable

L'atmosphère d'intérieur n'est pas agréable Régulateur température Confort activé Régulateur température Confort désactivé Régulateur température mise en veille activé Régulateur température mise en veille désactivé Régulateur température Eco activé Régulateur température Eco désactivé Régulateur température protection activé Régulateur température protection désactivé Régulateur température chauffage 1 activé Régulateur température chauffage 1 désactivé Régulateur température chauffage 2 activé Régulateur température chauffage 2 désactivé Régulateur température refroidissement 1 activé Régulateur température refroidissement 1 désactivé Régulateur température refroidissement 2 activé Régulateur température refroidissement 2 désactivé Régulateur humidité déshumidification 1 activée Régulateur humidité déshumidification 1 désactivé Régulateur humidité déshumidification 2 activé Régulateur humidité déshumidification 2 désactivé Régulateur humidité humidification activé Régulateur humidité humidification désactivé

8.15.3. Entrées de connexion de la logique OU

Les entrées de connexion de la logique OU correspondent à celles de la logique ET. En supplément de la logique OU sont disponibles en outre les entrées suivantes :

Sortie TOR ET logique 1 Sortie TOR ET logique 1 inversée Sortie TOR ET logique 2 Sortie TOR ET logique 2 inversée Sortie TOR ET logique 3 Sortie TOR ET logique 3 inversée Sortie TOR ET logique 4 Sortie TOR ET logique 4 inversée Sortie TOR ET logique 5 Sortie TOR ET logique 5 inversée Sortie TOR ET logique 6 Sortie TOR ET logique 6 inversée Sortie TOR ET logique 7 Sortie TOR ET logique 7 inversée Sortie TOR ET logique 8 Sortie TOR ET logique 8 inversée

Sohlengrund 16 75395 Ostelsheim Allemagne