

KNX SO250 Ultraschall-Sonde

Artikelnummer 70151

elsner

Handbuch

1.	Sicherheits- und Gebrauchshinweise	3
2.	Beschreibung	3
3.	Inbetriebnahme	4
3.1.	Gerät am Bus adressieren	. 4
4.	Bedienung	4
4.1.	Grundstellung der Anzeige	. 4
	4.1.1. Funktion der Tasten im Display-Menü	. 5
4.2.	Abstandsmessung	. 5
4.3.	Füllstandsmessung	. 6
	4.3.1. Rechtecktank	. 7
	4.3.2. Kugeltank	. 8
	4.3.3. Zylinder stehend	. 8
	4.3.4. Zylinder liegend	. 8
	4.3.5. Einstellungen für alle Tankformen	. 9
4.4.	Relais einstellen	. 9
	4.4.1. Relais 1 / 2 einstellen	10
	4.4.2. Relais 1 / 2 zur Störmeldung	11
4.5.	Akustiksignal	11
4.6.	Sprache	12
5.	Übertragungsprotokoll	13
5.1.	Liste aller Kommunikationsobjekte	13
6.	Einstellung der Parameter	15
6.1.	Allgemeine Einstellungen	15
	6.1.1. Abstandsmessung	15
	6.1.2. Füllstandsmessung	16
6.2.	Behälter und Berechnung (nur bei Füllstandsmessung)	16
	6.2.1. Rechtecktank	16
	6.2.2. Kugeltank	17
	6.2.3. Zylinder stehend	17
	6.2.4. Zylinder liegend	17
	6.2.5. Einstellungen für alle Tankformen	17
6.3.	Grenzwerte	18
	6.3.1. Grenzwert 1 / 2 / 3 / 4 / 5	18

Dieses Handbuch unterliegt Änderungen und wird an neuere Software-Versionen angepasst. Den Änderungsstand (Software-Version und Datum) finden Sie in der Fußzeile des Inhaltsverzeichnis.

Wenn Sie ein Gerät mit einer neueren Software-Version haben, schauen Sie bitte auf **www.elsner-elektronik.de** im Menübereich "Service", ob eine aktuellere Handbuch-Version verfügbar ist.

Zeichenerklärungen für dieses Handbuch

\wedge	Sicherheitshinweis
	Sicherheitshinweis für das Arbeiten an elektrischen Anschlüssen, Bauteilen etc.
GEFAHR!	weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden wird.
WARNUNG!	weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.
VORSICHT!	weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.
ACHTUNG!	weist auf eine Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.
ETS	In den ETS-Tabellen sind die Voreinstellungen der Parameter durch eine Unterstreichung gekennzeichnet.

1. Sicherheits- und Gebrauchshinweise

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung dürfen nur von einer Elektrofachkraft durchgeführt werden.

GEFAHR!

Lebensgefahr durch elektrische Spannung (Netzspannung)!

• Untersuchen Sie das Gerät vor der Installation auf Beschädigungen. Nehmen Sie nur unbeschädigte Geräte in Betrieb.

• Halten Sie die vor Ort geltenden Richtlinien, Vorschriften und Bestimmungen für die elektrische Installation ein.

 Nehmen Sie das Gerät bzw. die Anlage unverzüglich außer Betrieb und sichern Sie sie gegen unbeabsichtigtes Einschalten, wenn ein gefahrloser Betrieb nicht mehr gewährleistet ist.

Verwenden Sie das Gerät ausschließlich für die Gebäudeautomation und beachten Sie die Gebrauchsanleitung. Unsachgemäße Verwendung, Änderungen am Gerät oder das Nichtbeachten der Bedienungsanleitung führen zum Erlöschen der Gewährleistungs- oder Garantieansprüche.

Betreiben Sie das Gerät nur als ortsfeste Installation, das heißt nur in montiertem Zustand und nach Abschluss aller Installations- und Inbetriebnahmearbeiten und nur im dafür vorgesehenen Umfeld.

Für Änderungen der Normen und Standards nach Erscheinen der Bedienungsanleitung ist Elsner Elektronik nicht haftbar.

Informationen zur Installation, Wartung, Entsorgung, zum Lieferumfang und den technischen Daten finden Sie in der Installationsanleitung.

2. Beschreibung

Die **Ultraschall-Sonde KNX SO250** wird im KNX-Gebäudebussystem zur Erfassung der Füllmenge von Flüssigkeiten in Tanks und zur Distanzmessung eingesetzt. Neben Einsatzbereichen wie Regenwasserspeicher oder Heizöltank können auch z. B. Fischteich oder Brunnen oder der Parkabstand von LKWs überwacht werden.

Am Display des Ausgabegeräts ist der Abstand/Füllstand direkt ablesbar. Über das integrierte Tastenfeld können die Tankgeometrie und zwei Relais-Schaltausgänge eingestellt werden. Beim Schalten der Relais kann zusätzlich ein akustisches Alarmsignal ausgegeben werden.

Die Busfunktionen der **KNX SO250** lassen sich separat über die KNX-Software ETS konfigurieren. Für Befüllung, Entleerung, Trockenlaufschutz und Überlaufmeldung sind fünf Grenzwerte einstellbar.

Funktionen:

- Abstandsmessung
- Füllstandsmessung (Füllmenge oder Füllhöhe) in Kugel-, Rechteck- und Zylindertanks. Mehrere gleichartige Tanks als Batterie
- Einstellung der beiden Relais über das integrierte Display und Tastenfeld
- Einstellung der Busfunktionen über die ETS. 5 Schaltausgänge mit einstellbaren Grenzwerten (einstellbar per Parameter oder über Kommunikationsobjekte)

3. Inbetriebnahme

Die Konfiguration erfolgt mit der KNX-Software ab ETS 5. Die **Produktdatei** steht im ETS-Online-Katalog und auf der Homepage von Elsner Elektronik unter **www.elsnerelektronik.de** zum Download bereit.

Nach dem Anlegen der Busspannung befindet sich das Gerät einige Sekunden lang in der Initialisierungsphase. In dieser Zeit kann keine Information über den Bus empfangen oder gesendet werden.

3.1. Gerät am Bus adressieren

Das Gerät wird mit der physikalischen Adresse 15.15.255 ausgeliefert. Diese kann über die ETS geändert werden. Am Gerät befinden sich dafür ein Taster und eine Kontroll-LED.

4. Bedienung

Am Display der **KNX SO250** werden nur die Vorgaben für die beiden Ausgangs-Relais eingestellt. Weitere Parametrierungsmöglichkeiten sind in der ETS-Programmdatei hinterlegt.

Über den Bus ist die Sperrung der Messung und die Anforderung einer erneuten Messung möglich. Die Sperrung und der Messwert gelten dann auch für die Relais.

4.1. Grundstellung der Anzeige

oder

Grundstellung:

```
Tanksonde KNX SO250
```

Entfernung: 59.4cm Einstellungen >

```
Tanksonde KNX SO250
Tankinhalt:
4885 Liter
Einstellungen >
```

Im Display wird die aktuell gemessene Entfernung bzw. der Tankinhalt (je nach Einstellung) angezeigt. Falls keine Messung möglich ist, wird angezeigt "Kein Echo empfangen!". Folgende Einstellungen können direkt an der Tanksonde KNX SO250 vorgenommen werden:

- Abstandsmessung
- Füllstandsmessung
- Relais einstellen
- Akustiksignal

Die Anzeige wird nach 60 Sekunden gedimmt, wenn in diesem Zeitraum keine Taste betätigt wurde.

4.1.1. Funktion der Tasten im Display-Menü

\triangleright	Bestätigung der Auswahl, weiter zum nächsten Schritt.
4	Einen Schritt zurück.
$\nabla \Delta$	Änderung der Einstellung (Auswahl einer Einstellung oder Änderung eines Werts). Der Cursor (blinkendes Rechteck) zeigt an, welcher Menü- punkt gewählt ist.
ok	Bestätigung der Einstellungen und zurück zur Grundstellung des Geräts.

4.2. Abstandsmessung

Die **Ultraschall-Sonde KNX SO250** kann Abstände erfassen. Folgende Einstellungen werden im Menü "Abstandsmessung" vorgenommen:

- Einheit der Abstandsanzeige
- Zeitabstand der Messungen

Grundstellung:

Drücken Sie einmal die Taste Dum in den Bereich "Einstellungen" zu gelangen.

Abstandsmessung	
Füllstandsmessung	>
Relais einstellen	>
Akustiksignal	>

Bewegen Sie den Cursor (blinkendes Rechteck am rechten Rand) mit den Tasten ∇ und Δ zum Menüpunkt "Abstandsmessung" und drücken Sie die Taste \triangleright .

Anzeige	in mm	>
Anzeige	incm	>
Anzeige	in m	>

Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Sie können den Abstand in Millimetern (mm), Zentimetern (cm) oder Metern (m) anzeigen Jassen. Bestätigen Sie Ihre Auswahl mit der Taste

Wie oft soll		
gemessen werder	?	
Einmal in 8Se	к.	

Verwenden Sie die Tasten V und Δ um den gewünschten Zeitabstand für die Messungen einzustellen.

Einstellungsmöglichkeiten: Von 1 s bis 9 s in Ein-Sekunden-Schritten, von 10 s bis 50 s in Zehn-Sekunden-Schritten, von 1 min bis 120 min in 10-Minuten-Schritten. Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright . Sie gelangen automatisch in die Grundstellung zurück.

4.3. Füllstandsmessung

Die Tanksonde KNX SO250 kann die Füllmenge von Flüssigkeiten in Tanks erfassen. Mögliche Tankformen sind Rechtecktanks, Kugeltanks, stehende oder liegende zylindrische Tanks. Sind mehrere gleichartige Tanks in einer Batterie vorhanden, so muss nur ein Tank beschrieben werden und die KNX SO250 berechnet den Inhalt entsprechend der angegebenen Tank-Anzahl. Folgende Einstellungen werden im Menü "Füllstandsmessung" vorgenommen:

- Tankform
- Tankvolumen / Fassungsvermögen / Füllhöhe
- Sondenabstand zur Flüssigkeit bei vollem Tank
- Anzahl der Tanks in einer Batterie
- Einheit der Füllstandsanzeige
- Zeitabstand der Messungen

Grundstellung:

Tanksonde KNX S0250 oder Entfernung: 59.4cm Einstellungen > Tanksonde KNX 80250 Tankinhalt: 4885 Liter Einstellungen >

Drücken Sie einmal die Taste 🕨 um in den Bereich "Einstellungen" zu gelangen.

Abstandsmessung	\leq
Füllstandsmessung	> 🔳
Relais einstellen	>
Akustiksignal	>

Bewegen Sie den Cursor (blinkendes Rechteck am rechten Rand) mit den Tasten ∇ und Δ zum Menüpunkt "Füllstandsmessung" und drücken Sie die Taste $\overleftarrow{\mathsf{P}}$.

Rechtecktank	>
Kugeltank	>
Zylinder stehend	>
Zylinder liegend	>

Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Die KNX SO250 kann die Füllung von Rechtecktanks, Kugeltanks, stehenden oder liegenden zylindrischen Tanks erfassen.

Bestätigen Sie Ihre Auswahl mit der Taste \triangleright und fahren Sie fort wie bei der entsprechenden Tankform beschrieben.

4.3.1. Rechtecktank

Tankvolumen in l >**∭** Tankvolumen in m³ > Einheit auswählen! Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Sie können das Fassungsvermögen eines Tanks in Litern (I) oder Kubikmetern (m³) angeben. Bestätigen Sie Ihre Auswahl mit der Taste \triangleright .

Verwenden Sie die Tasten ∇ und Δ um das maximale Fassungsvermögen eines Tanks auszuwählen (in einem späteren Schritt kann die Anzahl der vorhandenen Tanks angegeben werden).

Einstellungsmöglichkeiten: *Liter*: 1 bis 99 l in Ein-Liter-Schritten, 100 bis 900 l in Hundert-Liter-Schritten, 1000 bis 100.000 l in Tausend-Liter-Schritten. *Kubikmeter*: 1 bis 99 m³ in Ein-Kubikmeter-Schritten, 100 bis 900 m³ in Hundert-Kubikmeter-Schritten, 1000 bis 100.000 m³ in Tausend-Kubikmeter-Schritten.

Bestätigen Sie Ihre Auswahl mit der Taste **D**.

Verwenden Sie die Tasten ∇ und Δ um die maximale Füllhöhe eines Tanks auszuwählen (1 bis 254 cm).

Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright und fahren Sie fort wie bei "Einstellungen für alle Tankformen" beschrieben.

4.3.2. Kugeltank

```
Innendurchmesser eines
Tanks:
200 cm ∎
```

Verwenden Sie die Tasten ∇ und Δ um den Innendurchmesser eines Tanks auszuwählen (1 bis 1000 cm).

Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright und fahren Sie fort wie bei "Einstellungen für alle Tankformen" beschrieben.

4.3.3. Zylinder stehend

```
Innendurchmesser eines
Tanks:
200 cm ∎
```

Verwenden Sie die Tasten ∇ und Δ um den Innendurchmesser eines Tanks auszuwählen (1 bis 1000 cm). Bestätigen Sie Ihre Auswahl mit der Taste $\overleftarrow{\mathsf{P}}$.

Max: ein@	ima ⊋s	le Tar	Fül ıks:	lhöhe	1
230	cm				

Verwenden Sie die Tasten ∇ und Δ um die maximale Füllhöhe eines Tanks auszuwählen (1 bis 254 cm).

Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright und fahren Sie fort wie bei "Einstellungen für alle Tankformen" beschrieben.

4.3.4. Zylinder liegend

Verwenden Sie die Tasten ∇ und Δ um die Länge eines Tanks auszuwählen.

Einstellungsmöglichkeiten: 1 bis 99 cm in Ein-Zentimeter-Schritten, 100 bis 900 cm in Hundert-Zentimeter-Schritten, 1000 bis 100.000 cm in Tausend-Zentimeter-Schritten. Bestätigen Sie Ihre Auswahl mit der Taste \triangleright .

Innendur Tanks:	rchmesser	eines
200 cm		

Verwenden Sie die Tasten ∇ und Δ um den Innendurchmesser eines Tanks auszuwählen (1 bis 1000 cm).

Bestätigen Sie Ihre Auswahl mit der Taste **>** und fahren Sie fort wie bei "Einstellungen für alle Tankformen" beschrieben.

8

4.3.5. Einstellungen für alle Tankformen

Sondenabstand zur Flüssigkeit bei vollem Tank: 15cm
Anzahl der Tanks in ei- ner Batterie:

2 Tanks 🔳

Verwenden Sie die Tasten ∇ und Δ um den Abstand der Sonde zur Flüssigkeit bei vollem Tank auszuwählen (12 bis 200 cm). Bestätigen Sie Ihre Auswahl mit der Taste \triangleright .

Verwenden Sie die Tasten ∇ und Δ um zu wählen, wie viele der beschriebenen Tanks in einer Batterie vorhanden sind (1 bis 100 Tanks). Bestätigen Sie Ihre Auswahl mit der Taste \triangleright .

Anzeige in m ³ >	
Anzeige in % >	

Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Die KNX SO250 kann die Füllmenge des Tanks in Litern (I), Kubikmetern (m³) oder Prozent (%) angeben. Bestätigen Sie mit \triangleright .

Verwenden Sie die Tasten ∇ und Δ um den gewünschten Zeitabstand für die Messungen einzustellen.

Einstellungsmöglichkeiten: Von 1 s bis 9 s in Ein-Sekunden-Schritten, von 10 s bis 50 s in Zehn-Sekunden-Schritten, von 1 min bis 120 min in 10-Minuten-Schritten.

Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright . Sie gelangen automatisch in die Grundstellung zurück.

4.4. Relais einstellen

Grundstellung:

Tanksonde KNX SO250 oder Entfernung: 59.4cm Einstellungen >

```
Tanksonde KNX SO250
Tankinhalt:
4885 Liter
Einstellungen >
```

Drücken Sie einmal die Taste 🕨 um in den Bereich "Einstellungen" zu gelangen.

Bewegen Sie den Cursor (blinkendes Rechteck am rechten Rand) mit den Tasten ∇ und Δ zum Menüpunkt "Relais einstellen" und drücken Sie die Taste Σ .

4.4.1. Relais 1 / 2 einstellen

Rel.	1	ei	nst	el	1	en	>
Rel.	2	ei	nst	el	1	en	>
Rel.	1	St	örπ	el	d	ung	>
Rel.	2	St	örπ	el	d	ung	>

Wenn Sie das Relais zur automatischen Befüllung/ Entleerung oder zur Überlauf-/Leermeldung verwenden möchten, bewegen Sie den Cursor mit den Tasten ∇ oder Δ zum Menüpunkt "Rel. 1 einstellen" bzw. "Rel. 2 einstellen".

Die Einstellungsmöglichkeiten sind für beide Relais gleich. Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright .

Tankbefüllung	\leq
Tankent leerung	>
Überlaufmeldung	>
Leermeldung	>

Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Bestätigen Sie Ihre Auswahl mit der Taste \triangleright .

Tankbefüllung:

Tankbefüllung mit
Rel. 1 starten wenn
ein Minimalpegel von
15% erreicht ist.

Verwenden Sie die Tasten ∇ und Δ um den Minimalpegel (in %) einzustellen, bei dem die Befüllung des Tanks gestartet wird. Bestätigen Sie mit \triangleright .

Tankt	efüllung mit	
Rel.	1 beenden wenn	
ein M	aximalpeqel von	
90%	erreicht ist.	

Verwenden Sie die Tasten ∇ und Δ um den Maximalpegel (in %) einzustellen, bei dem die Befüllung des Tanks beendet wird. Bestätigen Sie Ihre Einstellung mit der Taste \triangleright . Sie gelangen automatisch in die Grundstellung zurück.

Tankentleerung:

Tankentleerung mit
Rel. 1 starten wenn
ein Maximalpegel von
90% II erreicht ⁻ ist.

Verwenden Sie die Tasten ∇ und Δ um den Maximalpegel (in %) einzustellen, bei dem die Entleerung des Tanks gestartet wird. Bestätigen Sie Ihre Einstellung mit der Taste \triangleright .

Tankentleerung mit	
Rel. 1 beenden wenn	
ein Maximalpegel von	
15% erreicht ist.	

Verwenden Sie die Tasten ∇ und Δ um den Minimalpegel (in %) einzustellen, bei dem die Entleerung des Tanks beendet wird. Bestätigen Sie Ihre Einstellung mit der Taste \triangleright . Sie gelangen automatisch in die Grundstellung zurück.

Überlaufmeldung:

"Tank ist voll" mit
Rel. 1 melden wenn
ein Maximalpegel von
90% II erreicht īst.

Verwenden Sie die Tasten ∇ und Δ um den Maximalpegel (in %) einzustellen, ab dem eine Überlaufmeldung ausgegeben wird. Bestätigen Sie Ihre Einstellung mit der Taste D. Sie gelangen automatisch in die Grundstellung zurück.

Leermeldung:

"Tank	ist leer"mit	
Rel. 1	l melden wenn	
ein Mi	inimalpegel von	
15% 📕 ε	erreicht ist.	

Verwenden Sie die Tasten ∇ und Δ um den Minimalpegel (in %) einzustellen, ab dem eine Leermeldung ausgegeben wird. Bestätigen Sie Ihre Einstellung mit der Taste \triangleright . Sie gelangen automatisch in die Grundstellung zurück.

4.4.2. Relais 1 / 2 zur Störmeldung

Rel.	1	einstellen >	
Rel.	2	einstellen >	
Rel.	1	Störmeldung>	
Rel.	2	Störmelduna>	

Wenn Sie über das Relais eine Störmeldung ausgeben möchten, bewegen Sie den Cursor mit den Tasten ∇ oder Δ zum Menüpunkt "Rel. 1 Störmeldung" bzw. "Rel. 2 Störmeldung".

Bestätigen Sie Ihre Auswahl mit der Taste \triangleright . Sie gelangen automatisch in die Grundstellung zurück.

Das gewählte Relais schließt nun im Fall einer Störung, weitere Einstellungen sind nicht möglich. Um die Störmeldung abzuschalten, wählen Sie für das Relais eine Funktion im Menüpunkt "Rel. 1/2 einstellen".

4.5. Akustiksignal

Die Tanksonde KNX SO250 bietet die Möglichkeit, bei Über- bzw. Unterschreitung der für die Relais eingestellten Werte akustisch zu warnen.

Grundstellung:

Tanksonde KNX S0250	oder
Entfernung: 59.4cm Einstellungen >	

Tanksonde KNX S025	Ø
Tankinhalt:	
4885 Liter	
Einstellungen >	

Drücken Sie einmal die Taste Dum in den Bereich "Einstellungen" zu gelangen.

Abstandsmessung	>
Füllstandsmessüng	>
Relais einstellen	>
Akustiksignal	≥∎

Bewegen Sie den Cursor (blinkendes Rechteck am rechten Rand) mit den Tasten ∇ und Δ zum Menüpunkt "Akustiksignal" und drücken Sie die Taste $\overleftarrow{\mathsf{P}}$.

Akustiksignal a	us 👌
mit Relais 1	>
mit Relais 2	>
mit Relais 1 & 2	: >

Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Einstellung. Die KNX SO250 kann ein Akustiksignal geben bei eingeschaltetem Relais 1, Relais 2 oder wenn Relais 1 oder 2 eingeschaltet ist.

Bestätigen Sie Ihre Auswahl mit der Taste \triangleright . Sie gelangen automatisch in die Grundstellung zurück.

4.6. Sprache

Grundstellung:

```
Tanksonde KNX SO250 oder
Entfernung: 59.4cm
Einstellungen >
```

```
Tanksonde KNX SO250
Tankinhalt:
4885 Liter
Einstellungen >
```

Drücken Sie einmal die Taste Dum in den Bereich "Einstellungen" zu gelangen.

Sprache	\geq	

Bewegen Sie den Cursor (blinkendes Rechteck am rechten Rand) mit den Tasten ∇ und Δ zum Menüpunkt "Sprache" und drücken Sie die Taste D.

Sprache :Deutsch **∭** Language:English Langue :Français Lingua :Italiano∨ Bewegen Sie den Cursor mit den Tasten ∇ oder Δ zur gewünschten Sprache (Deutsch, Englisch, Französisch, Italienisch oder Spanisch).

Bestätigen Sie Ihre Auswahl mit der Taste \blacktriangleright . Sie gelangen automatisch in die Grundstellung zurück.

5. Übertragungsprotokoll

5.1. Liste aller Kommunikationsobjekte

Abkürzungen

EIS-Typen: EIS 1 Schalten 1/0 EIS 5 Gleitkomma-Wert EIS 6 8 Bit Wert EIS 9 Float Wert

Flags:

K Kommunikation

- L Lesen
- S Schreiben
- Ü Übertragen
- A Aktualisieren

Nr.	Name	Funktion	EIS- Typ	Flags
0	Messwert in Liter	Ausgang	5	KLÜ
1	Messwert in m ³	Ausgang	9	KLÜ
2	Messwert in %	Ausgang	6	KLÜ
3	Messwert in m	Ausgang	9	KLÜ
4	Messwertanforderung	Eingang	1	KLS
5	Messung sperren	Eingang	1	KLS
6	Sensorstörung	Ausgang	1	KLÜ
7	Min/Max Abgleich	Eingang	1	KLS
8	Max Füllmenge anfordern	Eingang	1	KLS
9	Max Füllmenge in Liter	Ausgang	5	KLÜ
10	Max Füllmenge in m ³	Ausgang	5	KLÜ
11	Grenzwert 1 in Liter: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
12	Grenzwert 1 in m ³ : 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
13	Grenzwert 1 in %: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
14	Grenzwert 1 in m: 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
15	Grenzwert 1: 1 = Anhebung 0 = Absenkung	Eingang	1	KLS
16	Grenzwert 1: Anhebung	Eingang	1	KLS
17	Grenzwert 1: Absenkung	Eingang	1	KLS
18	Grenzwert 1: Schaltausgang	Ausgang	1	KLÜ
19	Grenzwert 1: Schaltausgang Sperre	Eingang	1	KLS

Nr.	Name	Funktion	EIS- Typ	Flags
20	Grenzwert 2 in Liter: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
21	Grenzwert 2 in m ³ : 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
22	Grenzwert 2 in %: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
23	Grenzwert 2 in m: 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
24	Grenzwert 2: 1 = Anhebung 0 = Absenkung	Eingang	1	KLS
25	Grenzwert 2: Anhebung	Eingang	1	KLS
26	Grenzwert 2: Absenkung	Eingang	1	KLS
27	Grenzwert 2: Schaltausgang	Ausgang	1	KLÜ
28	Grenzwert 2: Schaltausgang Sperre	Eingang	1	KLS
29	Grenzwert 3 in Liter: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
30	Grenzwert 3 in m ³ : 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
31	Grenzwert 3 in %: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
32	Grenzwert 3 in m: 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
33	Grenzwert 3: 1 = Anhebung 0 = Absenkung	Eingang	1	KLS
34	Grenzwert 3: Anhebung	Eingang	1	KLS
35	Grenzwert 3: Absenkung	Eingang	1	KLS
36	Grenzwert 3: Schaltausgang	Ausgang	1	KLÜ
37	Grenzwert 3: Schaltausgang Sperre	Eingang	1	KLS
38	Grenzwert 4 in Liter: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
39	Grenzwert 4 in m ³ : 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
40	Grenzwert 4 in %: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
41	Grenzwert 4 in m: 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
42	Grenzwert 4: 1 = Anhebung 0 = Absenkung	Eingang	1	KLS
43	Grenzwert 4: Anhebung	Eingang	1	KLS
44	Grenzwert 4: Absenkung	Eingang	1	KLS
45	Grenzwert 4: Schaltausgang	Ausgang	1	KLÜ
46	Grenzwert 4: Schaltausgang Sperre	Eingang	1	KLS
47	Grenzwert 5 in Liter: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
48	Grenzwert 5 in m ³ : 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
49	Grenzwert 5 in %: 16 Bit Wert	Eingang / Ausgang	5	KLSÜA
50	Grenzwert 5 in m: 16 Bit Wert	Eingang / Ausgang	9	KLSÜA
51	Grenzwert 5: 1 = Anhebung 0 = Absenkung	Eingang	1	KLS
52	Grenzwert 5: Anhebung	Eingang	1	KLS
53	Grenzwert 5: Absenkung	Eingang	1	KLS
54	Grenzwert 5: Schaltausgang	Ausgang	1	KLÜ

Nr.	Name	Funktion	EIS- Typ	Flags
55	Grenzwert 5: Schaltausgang Sperre	Eingang	1	KLS
56	Software Version	auslesbar	16 Bit	KL

6. Einstellung der Parameter

6.1. Allgemeine Einstellungen

6.1.1. Abstandsmessung

Sensoreinstellungen:

Sensor misst	Abstand • Füllstand
Abstands Offset in cm	<u>12</u> 200
Störobjekt verwenden	Ja∙ <u>Nein</u>

Messverhalten:

Messung durchführen	zyklisch • auf Anfrage und zyklisch
Objekt Messung sperren verwenden Wenn das Objekt verwendet wird: bei Wert: 1 = Messung sperren 0 = Messung freigeben Wert vor 1. Kommunikation: 0	Ja ∙ <u>Nein</u>

Hinweis: Wenn die Messung auf Anfrage durchgeführt wird, wird der Messwert sofort gesendet.

Sendeverhalten:

Messwert	 zyklisch senden bei Änderung senden bei Änderung und zyklisch senden
ab Änderung in % (nur wenn "bei Änderung" gesendet wird)	<u>1</u> 50
zyklisch senden alle (nur wenn "zyklisch" gesendet wird)	<u>5 s</u> 2h
Ausgabe des Messwertes in	m
Allgemeine Sendeverzögerung nach Power Up und Programmierung	5 s • <u>10 s</u> • 20 s • 30 s • 1 min • 2 min • 5 min

6.1.2. Füllstandsmessung

Sensoreinstellungen:

Sensor misst	Abstand • Füllstand
Störobjekt verwenden	Ja ● <u>Nein</u>

Messverhalten:

Messung durchführen	zyklisch • auf Anfrage und zyklisch
Objekt Messung sperren verwenden	Ja ● <u>Nein</u>
Wenn das Objekt verwendet wird: bei Wert: 1 = Messung sperren	
0 = Messung freigeben Wert vor 1. Kommunikation: 0	

Hinweis: Wenn die Messung auf Anfrage durchgeführt wird, wird der Messwert sofort gesendet.

Sendeverhalten:

Messwert	 zyklisch senden bei Änderung senden bei Änderung und zyklisch senden
ab Änderung in % (nur wenn "bei Änderung" gesendet wird)	<u>1</u> 50
zyklisch senden alle (nur wenn "zyklisch" gesendet wird)	<u>5 s</u> 2h
Ausgabe des Messwertes in	Liter • Kubikmeter • % • m
Max. Füllmenge auf Anforderung senden	Ja∙ <u>Nein</u>
Max. Füllmenge senden in (nur wenn Füllmenge auf Anforderung gesendet wird und Ausgabe des Messwerts in % oder in m erfolgt)	<u>Liter</u> • Kubikmeter
Allgemeine Sendeverzögerung nach Power Up und Programmierung	$5 \text{ s} \cdot \underline{10 \text{ s}} \cdot 20 \text{ s} \cdot 30 \text{ s} \cdot 1 \text{ min} \cdot 2 \text{ min} \cdot 5 \text{ min}$

6.2. Behälter und Berechnung (nur bei Füllstandsmessung)

6.2.1. Rechtecktank

Behälterform	• rechteckig • Kugelbehälter • Zylinder stehend • Zylinder liegend
Volumenangabe in	Liter • Kubikmeter

Volumen in Liter Volumen in Kubikmeter	1 100.000; <u>1.000</u>
Füllhöhe in cm	1 254; <u>200</u>
Füllstand korrigieren	Ja ● <u>Nein</u>
Korrektur von (nur wenn Füllstand korrigiert wird)	<u>Minimum</u> • Maximum • Minimum und Maximum
Soll Korrektur nach Programmierung erhal- ten bleiben?	Ja ∙ <u>Nein</u>

Hinweis: Bei der Füllstandskorrektur wird der Parameter Füllhöhe bzw. Sensorkopfabstand in der Software angepasst.

6.2.2. Kugeltank

Behälterform	 rechteckig Kugelbehälter Zylinder stehend Zylinder liegend
Innendurchmesser in cm	1 254; <u>100</u>

6.2.3. Zylinder stehend

Behälterform	 rechteckig Kugelbehälter Zylinder stehend Zylinder liegend
Innendurchmesser in cm	1 1000; <u>100</u>
Füllhöhe in cm	1 254; <u>200</u>

6.2.4. Zylinder liegend

Behälterform	 rechteckig Kugelbehälter Zylinder stehend Zylinder liegend
Innendurchmesser in cm	1 254; <u>100</u>
Länge in cm	1 100.000; <u>200</u>

6.2.5. Einstellungen für alle Tankformen

Anzahl Behälter in einer Batterie	1 100; <u>10</u>
Sensorkopfabstand bei max. Befüllung in cm	<u>12</u> 200

Achtung: Ist das Gesamtvolumen größer als 670.760 Liter, kann der Messwert nur in m³ korrekt ausgegeben werden.

6.3. Grenzwerte

Grenzwert 1 verwenden	Ja∙ <u>Nein</u>
Grenzwert 2 verwenden	Ja ● <u>Nein</u>
Grenzwert 3 verwenden	Ja∙ <u>Nein</u>
Grenzwert 4 verwenden	Ja∙ <u>Nein</u>
Grenzwert 5 verwenden	Ja • Nein

6.3.1. Grenzwert 1 / 2 / 3 / 4 / 5

Grenzwert:

Einheit Achtung: für Abstandmessung nur "cm" zulässig!	Liter • Kubikmeter • % • <u>cm</u>
Grenzwertvorgabe per	Parameter • Kommunikationsobjekt

Wenn "Grenzwertvorgabe per Parameter" gewählt wurde:

Grenzwert in Liter	1 10.000.000; 1.000
Grenzwert in m ³	1 10.000.000; 10
Grenzwert in %	0 100; <u>10</u>
Grenzwert in cm	1 254; <u>10</u>
Hysterese des Grenzwertes in %	<u>0</u> 50

Wenn "Grenzwertvorgabe per Kommunikationsobjekt" gewählt wurde:

Der zuletzt kommunizierte Wert soll erhalten bleiben	 <u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Grenzwert in Liter	1 10.000.000; 1.000
Start Grenzwert in m ³	1 10.000.000; 10
Start Grenzwert in %	0 100; <u>10</u>
Start Grenzwert in cm	1 254; 10
gültig bis zur 1. Kommunikation (nicht bei Erhalt nach Programmierung)	

Art der Grenzwertveränderung	 <u>Absolutwert mit einem 16 Bit Kom.Objekt</u> (bei I) <u>Absolutwert mit einem 32 Bit Kom.Objekt</u> (bei m³ und cm) <u>Absolutwert mit einem 8 Bit Kom.Objekt</u> (bei %) Anhebung / Absenkung mit einem Kom.Objekt Anhebung / Absenkung mit zwei Kom.Objekten
Schrittweite (nur bei "Anhebung / Absenkung mit einem/zwei Kom.Objekt(en)")	$0,1 \cdot 0,2 \cdot 0,5 \cdot 1 \cdot 2 \cdot 5 \cdot 10 \cdot 20 \text{ Liter}$ $0,1 \cdot 0,2 \cdot 0,5 \cdot 1 \cdot 2 \cdot 5 \cdot 10 \cdot 20 \text{ m}^{3}$ $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 10 \%$ $1 \cdot 2 \cdot 5 \cdot 10 \text{ cm}$
Hysterese des Grenzwertes in %	<u>0</u> 50

Schaltausgang:

Schaltverzögerung von 0 auf 1	<u>keine</u> • 1 s 2h
Schaltverzögerung von 1 auf 0	<u>keine</u> • 1 s 2h
Ausgang ist bei (GW = Grenzwert) (Schaltab. = Schaltabstand)	 <u>GW über = 1</u> <u>GW - Schaltab. unter = 0</u> <u>GW über = 0</u> <u>GW - Schaltab. unter = 1</u> <u>GW unter = 1</u> <u>GW + Schaltab. über = 0</u> <u>GW unter = 0</u> <u>GW + Schaltab. über = 1</u>
Schaltausgang sendet	bei Änderung • bei Änderung auf 1 • bei Änderung auf 0 • bei Änderung und zyklisch • bei Änderung auf 1 und zyklisch • bei Änderung auf 0 und zyklisch
Schaltausgang sendet im Zyklus von	<u>5 s</u> 2 h

Sperrung:

|--|

Wenn "Sperrung des Schaltausgangs verwenden: Ja" gewählt wurde:

Auswertung des Sperrobjekts	 bei Wert 1: sperren bei Wert 0: freigeben bei Wert 0: sperren bei Wert 1: freigeben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> •1

Verhalten des Schaltausgangs

beim Sperren	kein Telegramm senden • 0 senden • 1 senden
beim Freigeben	(abhängig vom Sendeverhalten des Schalt- ausgangs)

Das Verhalten des Schaltausgangs ist abhängig vom Wert des Parameters "Schaltausgang sendet ..." (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	 kein Telegramm senden Status des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 kein Telegramm senden wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 \rightarrow sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = $0 \rightarrow$ sende 0

Ultraschall-Sonde KNX SO250 • Stand: 25.04.2024 • Technische Änderungen und Irrtümer vorbehalten.

20

Fragen zum Produkt?

Den technischen Service von Elsner Elektronik erreichen Sie unter Tel. +49 (0) 70 33 / 30 945-250 oder service@elsner-elektronik.de

Folgende Informationen benötigen wir zur Bearbeitung Ihrer Service-Anfrage:

- Gerätetyp (Modellbezeichnung oder Artikelnummer)
- Beschreibung des Problems •
- Seriennummer oder Softwareversion
- Bezugsquelle (Händler/Installateur, der das Gerät bei Elsner Elektronik gekauft ٠ hat)

Bei Fragen zu KNX-Funktionen:

- Version der Geräteapplikation
- Für das Projekt verwendete ETS-Version

Elsner Elektronik GmbH Steuerungs- und Automatisierungstechnik Sohlengrund 16

75395 Östelsheim Deutschland

Tel. +49 (0) 70 33 / 30 945-0 info@elsner-elektronik.de Fax +49 (0) 70 33 / 30 945-20 www.elsner-elektronik.de