

KNX W

Wind Sensor

Installation and Adjustment

1.	Description	3
1.1.	Deliverables	3
1.2.	Technical specifications	3
2.	Installation and commissioning	4
2.1.	Location	5
2.2.	Mounting the sensor	6
	2.2.1. Attaching the mount	6
	2.2.2. View of rear side and drill hole plan	7
	2.2.3. Preparing the sensor	8
	2.2.4. PCB layout	9
	2.2.5. Mounting the weather station	10
2.3.	Notes on mounting and commissioning	11
3.	Addressing of the device at the bus 1	12
4.	Maintenance	12
5.	Disposal	
5. 6.		12
6.	Disposal 1	12
6. 6.1. 7.	Disposal	1 2 1 4 14
6. 6.1. 7.	Disposal	1 2 1 4 14
6. 6.1. 7.1.	Disposal	1 4 14 17
6. 6.1. 7.1.	Disposal	1 2 1 4 1 7 17
6.1. 7.1. 7.2.	Disposal	12 14 17 17 17 17
6.1. 7.1. 7.2.	Disposal	12 14 17 17 17 17
6.1. 7.1. 7.2.	Disposal	12 14 14 17 17 17 17 19
6.1. 7.1. 7.2.	Disposal	12 14 14 17 17 17 19 19

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

4

Safety advice for working on electrical connections, components,

etc.

DANGER!

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

WARNING!

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

CAUTION!

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

STOP

ATTENTION! ... indicates a situation which may lead to damage to property if it is not avoided.

ETS

In the ETS tables, the parameter default settings are marked by

underlining.

1. Description

The **Wind Sensor KNX W** measures wind speed and transfers the values to the KNX system. Three switching outputs with adjustable threshold values as well as additional AND and OR logic gates are available. The sensor system, the evaluation electronics and the electronics of the bus connection are mounted in a compact housing.

Functions:

- Wind measurement: The wind strength measurement takes place electronically and thus noiselessly and reliably, even during hail, snow and sub-zero temperatures. Even turbulent air and anabatic winds in the vicinity of the weather station are recorded
- Wind sensor monitoring: If the wind measurement value changes by less than ± 0.5 m/s within 48 hours, the maximum measurement value of 35 m/s is output as a fault message. All wind alarms with a limit value below 35 m/s become active as a result
- 3 threshold values can be adjusted per parameter or via communication objects
- 8 AND and 8 OR logic gates with each 4 inputs. Every switching incident as
 well as 8 logic inputs (in the form of communication objects) may be used as
 inputs for the logic gates. The output of each gate may optionally be configured
 as 1 bit or 2 x 8 bits

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.1. Deliverables

- Sensor with combined wall/pole mounting
- 2x stainless steel installation band for pole installation

1.2. Technical specifications

Housing	Plastic material
Colour	White / translucent
Mounting	On-wall
Degree of protection	IP 44
Dimensions	approx. 96 × 77 × 118 (W × H × D, mm)
Weight	230 V AC version: approx. 240 g, 2030 V DC version approx. 170 g
Ambient temperature	Operation -30+50°C, storage -30+70°C
Operating voltage	Available for 230 V AC or 2030 V DC. An appropriate power supply unit can be obtained from Elsner Elektronik.
Cable cross-section	Massive conductors of up to 1.5 mm ² or conductors with fine wires

Current	230 V AC version max. 20 mA. 2030 V DC version: max. 30 mA., max. 0,4 W. Residual ripple 10%
Data output	KNX +/- bus terminal plug
Group addresses	max. 254
Allocations	max. 255
Communication objects	80
Measurement range Wind	035 m/s
Resolution (wind)	0,1 m/s
Accuracy (wind)	at ambient temperature -20+50°C:
	±22% of the measurement value when incident flow is from 45315°
	±15% of the measurement value when incident flow is
	from 90270°
	(Frontal incident flow corresponds to 180°)

The product conforms with the provisions of EU directives

Installation and commissioning

Installation, testing, operational start-up and troubleshooting should only be performed by an authorised electrician.

DANGER!

Risk to life from live voltage (mains voltage)!

There are unprotected live components inside the device.

- Inspect the device for damage before installation. Only put undamaged devices into operation.
- Comply with the locally applicable directives, regulations and provisions for electrical installation.
- Immediately take the device or system out of service and secure it against unintentional switch-on if risk-free operation is no longer guaranteed.

Use the device exclusively for building automation and observe the operating instructions. Improper use, modifications to the device or failure to observe the operating instructions will invalidate any warranty or guarantee claims.

Operate the device only as a fixed-site installation, i.e. only in assembled condition and after conclusion of all installation and operational start-up tasks, and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.1. Location

Select an assembly location at the building where wind speed may be collected by the sensor unobstructedly.

At least 60 cm of clearance must be left all round the device. This facilitates correct wind speed measurement without eddies. The distance concurrently prevents spray (raindrops hitting the device) or snow (snow penetration) from impairing the measurement. It also does not allow birds to bite it.

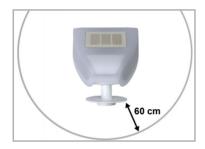


Fig. 1
There must be at least 60 cm of space below, to the sides and in front of the sensor left from other elements (structures, construction parts, etc.).

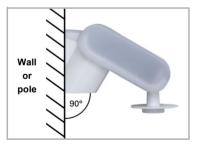


Fig. 2
The wind sensor must be mounted on a vertical wall (or a pole).

Fig. 3
The wind sensor must be mounted in the horizontal transverse direction (horizontally).

2.2. Mounting the sensor

2.2.1. Attaching the mount

The sensor comes with a combination wall/pole mount. The mount comes adhered by adhesive strips to the rear side of the housing. Fasten the mount vertically onto the wall or pole.

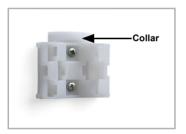


Fig. 4
When wall mounting: flat side on wall, crescent-shaped collar upward.

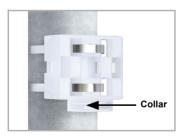


Fig. 5
When pole mounting: curved side on pole, collar downward.

Fig. 6

Different mounting arms are available from Elsner Elektronik as additional, optional accessories for flexible installation of the weather station on a wall, pole or beam.

Example of the use of a mounting arm: Due to flexible ball joints, the sensor can be brought into ideal position.

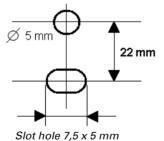


Fig. 7
Example use of the hinge arm mounting:
Fitting to a pole with worm drive hose clips

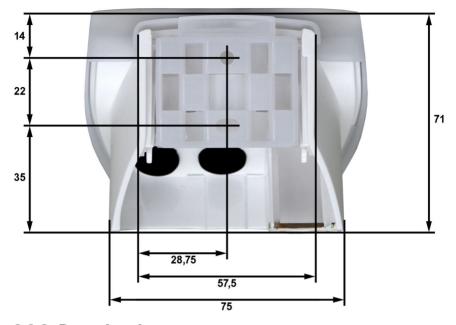

2.2.2. View of rear side and drill hole plan

Fig. 8 a+b Drill hole plan

Dimensions of rear side of housing with bracket. Subject to change for technical enhancement.

Wind Sensor KNX W • Status: 11.11.2021 • Technical changes reserved. Errors reserved.

2.2.3. Preparing the sensor

The sensor cover snaps in on the left and right along the bottom edge (see Fig.). The cover of the 230V model is also screwed on top. Remove the cover. Proceed carefully, so as not to pull off the wire connecting the PCB in the bottom part with the cover (soldered cable connection in case of 230 V AC version, cable with plug in case of 20...30 V DC version).

Lead the cable for the voltage supply and bus connection through the rubber seals on the bottom of the device and connect Voltage L/N and Bus +/- to the terminals provided.

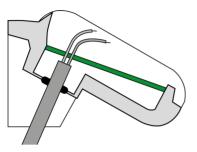
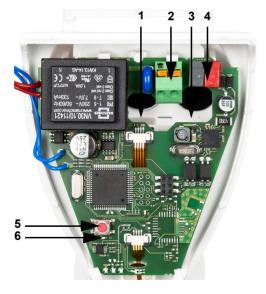



Fig. 10
Remove the cable shielding under the circuit board and only feed the connector cables upwards through the openings in the circuit board.

For 20...30 V DC devices the connection cable must be plugged in between the cover and circuit board.

2.2.4. PCB layout

230 V AC version

Fig. 11

- 1 Opening for the cable for the voltage supply
- 2 Tension clamp for voltage supply (230 V AC), suitable for massive conductors of up to 1.5 mm² or conductors with fine wires
- 3 Opening for bus cable
- 4 Slot for KNX clamp +/-
- 5 Programming pushbutton for the teach-in of the device
- 6 Programming LED

20...30 V DC version

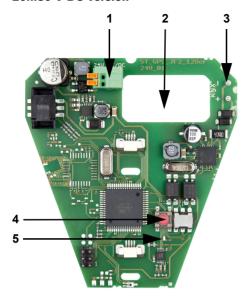


Fig. 12

- Tension clamp for voltage supply (20...30 V DC).
 Massive conductors of up to 1.5 mm² or conductors with fine wires. Terminal configuration independent from polarity (+/- or -/+).
- 2 Opening for the cable for the voltage supply and for bus cable
- 3 Slot for KNX clamp +/-
- 4 Programming pushbutton for the teach-in of the device
- 5 Programming LED

2.2.5. Mounting the weather station

Close the housing by putting the cover back over the bottom part. The cover must snap in on the left and right with a definite "click".

Fig. 13
Make sure the cover and bottom part are properly snapped together! This picture is looking at the closed sensor from underneath.

Fig. 14
With the 230V model, screw the cover on to
the underpart, to prevent unauthorised or accidental opening.

DANGER!

There is a risk to life from the live voltage on a 230 V device!

• The cover must be screwed on in operation.

Fig. 15
Push the housing from above into the fastened mount. The bumps on the mount must snap into the rails in the housing.

To remove it, the weather station can be simply pulled upwards out of the mount, against the resistance of the fastening.

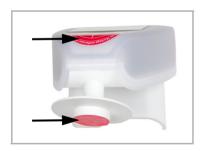


Fig. 16
After installation, remove the protective sticker on the wind sensor and the "distance" sticker on the top of the cover.

2.3. Notes on mounting and commissioning

Do not open the device if water (rain) might ingress: even some drops might damage the electronic system.

Observe the correct connections. Incorrect connections may destroy the sensor or connected electronic devices.

The measured wind value and thus all other wind switching outputs may only be supplied 60 seconds after the supply voltage has been connected.

After the auxiliary voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

Addressing of the device at the bus

The device is supplied with the bus address 15.15.255. You can program another address into the ETS by overwriting the 15.15.255 address or by teaching via the programming key on the circuit board inside the housing.

DANGER!

Risk to life from live voltage (mains voltage)!

- With the 230V model, bus addressing via the programming key should only be done by an accredited electrician.
- Do not touch any components on the circuit board while pressing the key.

4. Maintenance

DANGER!

There is a risk to life from the live voltage (mains voltage)!

If you come into contact with live components in the device, (e.g. caused also by a jet of water) there is the risk of an electric shock with 230 V devices.

Risk of injury caused by components moved automatically!

The automatic control can start system components and place people in danger (e.g. moving windows/awnings if a rain/wind alarm has been triggered while cleaning).

 Always isolate the device from the mains for servicing and cleaning (e. g. switch off or remove the fuse).

The device must regularly be checked for dirt twice a year and cleaned if necessary. In case of severe dirt, the sensor may not work properly anymore.

ATTENTION

The device can be damaged if water penetrates the housing.

Do not clean with high pressure cleaners or steam jets.

5. Disposal

After use, the device must be disposed of in accordance with the legal regulations. Do not dispose of it with the household waste!

6. Transmission protocol

Units of measurement:

Wind in metre per second

6.1. List of all communication objects

EIS types:

- 1 Switching 1/0
- 5 Floating point value
- 6 8 bit value

Abbreviations Flags:

- C Communication
- R Read
- W Write
- T Transmit

No.	Name	Function	ElStype	Flags
0	Wind force measured value	Output	5	CRT
1	Request maximum wind force	Input	1	CRW
2	Maximum wind force measured value	Output	5	CRT
3	Reset maximum wind force	Input	1	CRW
4	Wind sensor malfunction	Output	1	CRT
5	Wind threshold value 1	16 bit value	5	CRWT
6	Wind threshold value 1	1 = Increment 0 = Decrement	1	CRW
7	Wind threshold value 1	Increment	1	CRW
8	Wind threshold value 1	Decrement	1	CRW
9	Wind threshold value 1	Switching output	1	CRT
10	Wind threshold value 1	Switching output block	1	CRW
11	Wind threshold value 2	16 bit value	5	CRWT
12	Wind threshold value 2	1 = Increment 0 = Decrement	1	CRW
13	Wind threshold value 2	Increment	1	CRW
14	Wind threshold value 2	Decrement	1	CRW
15	Wind threshold value 2	Switching output	1	CRT
16	Wind threshold value 2	Switching output block	1	CRW
17	Wind threshold value 3	16 bit value	5	CRWT
18	Wind threshold value 3	1 = Increment 0 = Decrement	1	CRW

No.	Name	Function	ElStype	Flags
19	Wind threshold value 3	Increment	1	CRW
20	Wind threshold value3	Decrement	1	CRW
21	Wind threshold value 3	Switching output	1	CRT
22	Wind threshold value 3	Switching output block	1	CRW
23	AND Logic 1	Switching output	1	CRT
24	AND Logic 1	8 bit output A	6	CRT
25	AND Logic 1	8 bit output B	6	CRT
26	AND Logic 2	Switching output	1	CRT
27	AND Logic 2	8 bit output A	6	CRT
28	AND Logic 2	8 bit output B	6	CRT
29	AND Logic 3	Switching output	1	CRT
30	AND Logic 3	8 bit output A	6	CRT
31	AND Logic 3	8 bit output B	6	CRT
32	AND Logic 4	Switching output	1	CRT
33	AND Logic 4	8 bit output A	6	CRT
34	AND Logic 4	8 bit output B	6	CRT
35	AND Logic 5	Switching output	1	CRT
36	AND Logic 5	8 bit output A	6	CRT
37	AND Logic 5	8 bit output B	6	CRT
38	AND Logic 6	Switching output	1	CRT
39	AND Logic 6	8 bit output A	6	CRT
40	AND Logic 6	8 bit output B	6	CRT
41	AND Logic 7	Switching output	1	CRT
42	AND Logic 7	8 bit output A	6	CRT
43	AND Logic 7	8 bit output B	6	CRT
44	AND Logic 8	Switching output	1	CRT
45	AND Logic 8	8 bit output A	6	CRT
46	AND Logic 8	8 bit output B	6	CRT
47	OR Logic 1	Switching output	1	CRT
48	OR Logic 1	8 bit output A	6	CRT
49	OR Logic 1	8 bit output B	6	CRT
50	OR Logic 2	Switching output	1	CRT
51	OR Logic 2	8 bit output A	6	CRT
52	OR Logic 2	8 bit output B	6	CRT
53	OR Logic 3	Switching output	1	CRT
54	OR Logic 3	8 bit output A	6	CRT
55	OR Logic 3	8 bit output B	6	CRT
56	OR Logic 4	Switching output	1	CRT
57	OR Logic 4	8 bit output A	6	CRT

No.	Name	Function	ElStype	Flags
58	OR Logic 4	8 bit output B	6	CRT
59	OR Logic 5	Switching output	1	CRT
60	OR Logic 5	8 bit output A	6	CRT
61	OR Logic 5	8 bit output B	6	CRT
62	OR Logic 6	Switching output	1	CRT
63	OR Logic 6	8 bit output A	6	CRT
64	OR Logic 6	8 bit output B	6	CRT
65	OR Logic 7	Switching output	1	CRT
66	OR Logic 7	8 bit output A	6	CRT
67	OR Logic 7	8 bit output B	6	CRT
68	OR Logic 8	Switching output	1	CRT
69	OR Logic 8	8 bit output A	6	CRT
70	OR Logic 8	8 bit output B	6	CRT
71	Logic input 1	Input	1	CRW
72	Logic input 2	Input	1	CRW
73	Logic input 3	Input	1	CRW
74	Logic input 4	Input	1	CRW
75	Logic input 5	Input	1	CRW
76	Logic input 6	Input	1	CRW
77	Logic input 7	Input	1	CRW
78	Logic input 8	Input	1	CRW
79	Software Version	readable	6	CR

7. Setting of parameters

7.1. General settings

Maximum telegram quota	1 • 2 • 3 • <u>5</u> • 10 • 20 <u>telegrams per second</u>
------------------------	--

Wind force

Measured value	do not send send periodically send in case of change send in case of change
send periodically all (only if sending "periodically")	<u>5 sec</u> 2 h
From change in % (only if sending "on change")	1 50; <u>20</u>
Send and reset of the maximum wind load value on request	do not release • release
Use malfunction object	<u>No</u> • Yes

7.2. Threshold values

Wind force

Use threshold value 1 / 2 / 3	<u>No</u> • Yes
Transmission delay of the switching output after power up and programming	<u>5 sec</u> 2 h
Transmission delay of the switching output after power up and programming	<u>5 sec</u> 2 h

7.2.1. Wind threshold value 1/2/3

Threshold value

Threshold value setpoint per	Parameter • Communication object
Timedia Talad delponic poi	<u>r aramotor</u> communication object

If the threshold value is set per Parameter:

Threshold value in 0.1 m/s	0 350; <u>40</u>
Hysteresis of the threshold value in %	0 250; <u>20</u>

If the threshold value is set per Communication object:

From the 1st communication onwards, the threshold value corresponds to the value of the communication object and is not multiplied by the factor 0.1.

The value communicated last shall be maintained	not after restoration of voltage (the changes threshold value may be saved at least 100,000 times) after restoration of voltage and programming (Attention: Do not use for first commissioning)
Start threshold value in 0.1 m/s valid until 1. communication (only if the value communicated last is "not" maintained or "after restoration of voltage")	0 350; <u>40</u>
Type of threshold change	Absolute value with a 16 bit communication object Increment / decrement with one communication object Increment / decrement with two communication objects
Step size (only if sending "Increment/decrement")	0,1 m/s 5 m/s; <u>1 m/s</u>
Hysteresis of the threshold value in %	0 250; 20

Switching output

Output is at (TV = Threshold Value)	 TV above = 1 TV - Hyst. below = 0 TV above = 0 TV - Hyst. below = 1 TV below = 1 TV + Hyst. above = 0 TV below = 0 TV + Hyst. above = 1
Switching delay from 0 to 1	<u>none</u> • 1 sec 2 h
Switching delay from 1 to 0	<u>none</u> • 1 sec 2 h
Switching output sends	not on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
send periodically all (only if sending "periodically")	<u>5 sec</u> 2 h

Blocking

"Blocking" only appears if using "Switching output sends on change"

Use block of the switching outpu	ut Yes • No	

If block of the switching output is used:

Use block	of the switching output	Yes
Evaluatio	n of the blocking object	• if value 1: block if value 0: release • if value 0: block if value 1: release
Value of t	the blocking object before unication	<u>0</u> • 1
Behaviou with bloc	r of the switching output king	do not send telegram send 0 send 1
	r of the switching output ase (selection depends on settings ore)	 do not send telegram send status of the switching output if switching output = 1 => send 1 if switching output = 0 => send 0

7.3. Logic

Communication objects logic inputs	do not release • release

AND Logic

Logic 1/2/3/4/5/6/7/8	not active • active
Transmission delay of the switching	<u>5 sec</u> 2 h
outputs after power up and programming	

OR Logic

Logic 1/2/3/4/5/6/7/8	not active • active
Transmission delay of the switching	<u>5 sec</u> 2 h
outputs after power up and programming	

7.4. AND Logic 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8

1. / 2. / 3. / 4. Input	do not use all switching events which the sensor provides (see "Linkage inputs of the AND logic")
Logic output sends	 not one 1 bit object two 8 bit objects

Logic output sends "one 1 bit Object":

Logic output sends	one 1 bit object
if logic = 1 →object value	<u>1</u> •0
if logic = 0 →object value	1 • <u>0</u>

Communication object AND Logic 1 sends	in case of the change of logic in case of the change of logic to 1 in case of the change of logic to 0 in case of the change of logic and cyclically in case of the change of logic to 1 and cyclically in case of the change of logic to 0 and cyclically
send cyclically every (only if sending "cyclically")	<u>5 sec</u> 2 h

Logic output sends "two 8 bit objects":

Logic output sends	two 8 bit objects
if logic = 1 →object A value	0 255; <u>127</u>
if logic = 0 →object A value	<u>0</u> 255
if logic = 1 →object B value	0 255; <u>127</u>
if logic = 0 →object B value	<u>0</u> 255
Communication objects AND Logic 1 A and B sends	 in case of the change of logic in case of the change of logic to 1 in case of the change of logic to 0 in case of the change of logic and cyclically in case of the change of logic to 1 and cyclically in case of the change of logic to 0 and cyclically
send cyclically every (only if sending "cyclically")	<u>5 sec</u> 2 h

7.4.1. Linkage inputs of AND Logic

do not use

Communication object logic input 1

Communication object logic input 1 inverted

Communication object logic input 2

Communication object logic input 2 inverted

Communication object logic input 3

Communication object logic input 3 inverted

Communication object logic input 4

Communication object logic input 4 inverted

Communication object logic input 5

Communication object logic input 5 inverted

Communication object logic input 6

Communication object logic input 6 inverted

Communication object logic input 7

Communication object logic input 7 inverted

Communication object logic input 8

Communication object logic input 8 inverted

Malfunction wind

Malfunction wind inverted

Wind threshold value 1

Wind threshold value 1 inverted

Wind threshold value 2

Wind threshold value 2 inverted

Wind threshold value 3

Wind threshold value 3 inverted

7.4.2. OR Logic 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8

1. / 2. / 3. / 4. Input	do not use all switching events which the sensor provides (see "Linkage inputs of the OR logic")
Logic output sends	one 1 bit object two 8 bit objects

All settings of the OR logic correspond to those of the AND logic.

7.4.3. Linkage inputs of OR Logic

The linkage inputs of the OR logic correspond with the parameters of the AND logic. The OR logic is additionally provided with the following inputs:

AND Logic output 1

AND Logic output 1 inverted

AND Logic output 2

AND Logic output2 inverted

AND Logic output 3

AND Logic output 3 inverted

AND Logic output4

AND Logic output 4 inverted

AND Logic output 5

AND Logic output 5 inverted

AND Logic output 6

AND Logic output 6 inverted

AND Logic output 7

AND Logic output 7 inverted

AND Logic output 8

AND Logic output 8 inverted

